
Deployment

11.1

January 2026

DOCUMENT ACCESS

Public

DISCLAIMER

The contents of this document are under copyright of Critical Manufacturing S.A. it is released on condition that it
shall not be copied in whole, in part or otherwise reproduced (whether by photographic, or any other method) and
the contents therefore shall not be divulged to any person other than that of the addressee (save to other
authorized offices of his organization having need to know such contents, for the purpose for which disclosure is
made) without prior written consent of submitting company.

Page 1 of 5

Deployment

Overview

Connect IoT supports multiple architectures to best adapt to the integration scenario. The architecture of

the application is based on having a main or parent process: the Automation Manager , which is responsible

for spawning all the subprocesses of ConnectIoT.

Each process that Connect IoT runs is a Node.js process. The smallest amount of Node.js processes that

Connect IoT requires to be fully functional is four. It requires the parent process Automation Manager, the

Automation Monitor , then an Automation Controller and an Automation Driver.

Connect IoT also requires a registry with the packages required to run. These packages may be in a

directory or in an NPM registry. They can be in a directory to which the MES can access, leading the

Automation Manager to request the packages from the MES, removing the need for direct access from the

manager to the registry.

The Automation Manager also generates logs and can write process data to �les using a mechanism called

persistency. See Automation Manager Logging Con�g for more information.

System Requirements

The system requirements vary according to which drivers your implementation is using. Some of them have

speci�c features that are described in the Connect IoT Requirements.

Regarding hardware, it depends on what the Automation Manager is being used for and the level of tra�c

and processing that is expected. The hardware needs also vary by driver, with some being more resource

intensive than others. It is accepted that the bottleneck is typically RAM allocation. See Hardware

Requirements for more information.

Creating an Automation Controller Instance

The Automation Manager can be deployed without any controller instance associated. In this case it will

boot up and will query the MES for an instance, and if no instance is found it will wait for an instance to be

created. To have a running integration we must associate the Automation Manager to an Automation

Controller through an instance. See the How to Create a Controller Instance tutorial for more information.

Using the MES GUI

The �rst interaction most Connect IoT users have with the application is through the Automation Manager

GUI, where you can download a zip �le with all that you need to run the Automation Manager. The

download will also generate a new authentication token for the user selected as integration user for the

download. See the How to: Download the Automation Manager as a zip for more information.

It is important to note that the GUI allows the con�guration of each and any particular manager. Also, that

con�guration can be changed for all Automation Managers with the de�ned con�guration entry in

/Cmf/System/Configuration/ConnectIoT/ConfigurationTemplate/ , or alternatively in the speci�c Automation

Manager. This may be very useful to have pre-con�gured all the con�gurations for what is relevant in your

case.

The zip �le that is generated contains the following:

file:///app/site_online/userguide/automation/manager/automation-manager/
file:///app/site_online/userguide/automation/definition/automation-controller/
file:///app/site_online/userguide/automation/definition/automation-driver-definition/
file:///app/site_online/installationguide/post-installation/connect-iot/connectiotautomationmanagerconfig/#logging-structure
file:///app/site_online/systemrequirements/connectrequirements/
file:///app/site_online/systemrequirements/connectrequirements/#hardware-requirements
file:///app/site_online/tutorials/modules/connect-iot-equipment-integration/how-to/howto_createautomationcontrollerinstance/
file:///app/site_online/tutorials/modules/connect-iot-equipment-integration/how-to/howto_downloadautomationmanagerzip/

Page 2 of 5

Files

Regarding versioning and metadata, that is assured by the npm-shrinkwrap.json and package.json . The

README.md contains the documentation on the Automation Manager runtime. The config.json controls all

the key con�guration for the Automation Manager and is a key part of the deployment process. All the �elds

of the config.json are described in the documentation under Help IoT Runtime Components

Con�guration.

Folders

The src folder is where everything needed for the Automation Manager to run is located. The scripts and

service folder are utilities that are included in the zip �le to allow easy usage. The service folder has

everything needed for the Automation Manager to be installed as a Windows Service. The scripts has the

StartConsole.bat batch script which enables running the Automation Manager as a console application,

while also having the InstallService.ps1 script that allows you to install the Automation Manager as a

Windows Service.

Using the Setup

The Critical Manufacturing MES Setup allows the deployment of an Automation Manager or several through

a GUI. This method is useful if you want to deploy several managers, making the manual download through

the GUI impractical if you prefer to have a simple GUI abstraction.

You can read more about all relevant setup con�gurations in the Help Connect IoT Installation page. The

process involves selecting the Cmf.ConnectIoT.Packages deployment option, which enables you to con�gure

all relevant config.json �elds directly through the GUI. It also supports installation as a Windows Service.

├── scripts/
 ├── InstallService.ps1
 ├── StartConsole.bat
 ├── ...
├── service/
└── src/
 ├── config.json
 ├── npm-shrinkwrap.json
 ├── package.json
 └── README.md

file:///app/site_online/installationguide/post-installation/connect-iot/connectiotautomationmanagerconfig/
file:///app/site_online/installationguide/post-installation/connect-iot/connectiotinstallation/

Page 3 of 5

Running as a Console

This method is very useful when developing or troubleshooting an installation. It consists on running the

process as a console by using the StartConsole.bat script. When you run as a console, all the logs are

aggregated as console output to make it easier to spot errors that are occurring.

Productive Deployment

There are several di�erent ways to have a productive deployment of the Automation Manager , but before

starting with the di�erences, let's start with the similarities.

In a High Availability scenario, if a manager goes down, another must start to take its place. It's important

that whenever a new process starts, it doesn't start from scratch and that it inherits the context that the

previous manager was working with. This is very impactful when thinking about implementations that

depend on a persistent layer for tracking or data collection. If Manager 1 is tracking Material A and for

some reason Manager 1 goes down, it's important that the new Manager 2 has a notion of Material A.

It is strongly suggested that if using persistency layer for any logic, the Storage/Persistency layer be stored in a shared

folder accessible to all manager nodes.

Logging

It is also important to con�gure the logging appropriately; this is critical for very verbose drivers and

implementations. The retention times, rollovers, verbosity and others can be con�gured. If retaining a

Warning

file:///app/site_online/tutorials/images/iot_deployment_setup.png

Page 4 of 5

signi�cant volume of logs for an extended period is important, consider o�oading them to a shared folder

to mitigate the risk of data loss. See Help Logging Con�guration for more information.

Certi�cates

It is required that a certi�cate is de�ned for the Automation Manager. The certi�cate must be placed (or

path to the certi�cate) in an environment variable NODE_EXTRA_CA_CERTS Certi�cate Troubleshooting. For

development purposes the �ag NODE_TLS_REJECT_UNAUTHORIZED can be set to 0 , indicating that the

certi�cate will be used exactly as received.

For more information, see Extra CA Certi�cates Node.js & Node.js original issue ⧉.

Running as a Windows Service

This was traditionally the main approach of a production environment and remains very much a possibility.

Some drivers (like OIB and OPC-DA) are Windows-based, either because they are built on .NET Framework

or due to the use of the DCOM, both of which are Windows exclusive. As explained before, both the

download action in the MES GUI and the Setup provide easy ways to install the Automation Manager as a

Windows Service Library used for Creating Node.js Windows Services ⧉. It is important to highlight that the

user de�ned to run the Windows Service is also very important, as the permissions, or lack thereof may

cause side e�ects. Keep in mind also, that if the password has expiration this will impact the Automation

Manager, that is running that user

High Availability Running as a Windows Service

Achieving High Availability using Windows Services is possible using Windows Server Failover Clustering

(WSFC). This Microsoft technology creates a cluster of di�erent machines, each with the Windows Service

installed. The Failover Cluster guarantees that one - and only one - instance runs at any given time across

all available nodes. If a node goes down (that is, a Windows Service is shut down), it will start a new

Windows Service in the other node. Since all nodes share the same access, con�gurations, and so on, the

transition is smooth and seamless when the failover occurs.

Using the DevOps Center

Critical Manufacturing created a portal to be able to remotely perform all deployments, which is the

DevOps Center. It also supports di�erent orchestrators for deployment and di�erent deployment targets

deployment targets ⧉.

Note

file:///app/site_online/installationguide/post-installation/connect-iot/connectiotautomationmanagerconfig/#logging-structure
file:///app/site_online/installationguide/post-installation/connect-iot/connectiotinstallation/#unable-to-verify-the-first-certificate
https://github.com/nodejs/node/pull/9139/files#diff-fbb424b0c726f25a6ab1100125b7e97a96142f900c0c328805905f39004e0e8e
https://github.com/nodejs/node/issues/4175
https://github.com/winsw/winsw/tree/master
file:///app/site_online/installationguide/planning-and-installation-guides/database-servers/#preparing-windows-server-failover-cluster
https://portal.criticalmanufacturing.com/Help/devops-center/
https://portal.criticalmanufacturing.com/Help/devops-center/deployment-targets/
file:///app/site_online/tutorials/images/iot_deployment_devopscenter.png

Page 5 of 5

Using the Agent

Assuming there is an agent running in your machine, that agent will have the possibility to deploy

Automation Managers by using the Infrastructure, deploying new Environments , MES Example ⧉, for each

Automation Manager.

In order to deploy an Automation Manager select the Deployment Package and the Automation Manager

for the version you require. Then select the target for the deployment. In the General Data, specify the

Manager Id that you are deploying and the manager con�guration related to system. For more information,

see Help System Con�guration.

Regarding service resources, the Automation Manager will just run one instance of itself, so only one

replica is needed. Under Volumes, specify the locations for logs, persistent storage, and the Connect IoT

packages.

For certain drivers it is also important to create volumes which is the case for all drivers that require �le

monitoring and processing. The DevOps Center allows you to set those mounts through the GUI as well.

Currently, the only way to set open speci�c ports or ranges is by editing con�guration yaml in the manager

deployment.

Using the Agent, the agent will automatically deploy the stack.

Standalone Installation

The Standalone Installation works in the same way as using the agent, but it will generate a zip �le that can

be manually executed. In other words, it is the previous method but with a manual deployment.

The zip �le that is generated depends on the Target selected, but will consist on scripts to deploy and

remove the stack and then the needed con�guration yaml �les.

When using a driver that requires an external system to connect to it, instead of it connecting to an external system,

a port will need to be opened for this access. Currently, the DevOps Center does not support setting it through the

GUI. In order to do this, it will require a manual change in the con�guration yaml, or in the system that is managing

your stack, i.e portainer to open the port.

Enabling Inbound Tra�c

file:///app/site_online/tutorials/images/iot_deployment_setup_manager.png
https://portal.criticalmanufacturing.com/Help/devops-center/guide/create_infrastructure_agent/
file:///app/site_online/installationguide/installation/
file:///app/site_online/installationguide/post-installation/connect-iot/connectiotautomationmanagerconfig/#system-structure

Legal Information

Disclaimer

The information contained in this document represents the current view of Critical Manufacturing
on the issues discussed as of the date of publication. Because Critical Manufacturing must
respond to changing market conditions, it should not be interpreted to be a commitment on the
part of Critical Manufacturing, and Critical Manufacturing cannot guarantee the accuracy of any
information presented after the date of publication. This document is for informational purposes
only.

Critical Manufacturing makes no warranties, express, implied or statutory, as to the information
herein contained.

Confidentiality Notice

All materials and information included herein are being provided by Critical Manufacturing to its
Customer solely for Customer internal use for its business purposes. Critical Manufacturing retains
all rights, titles, interests in and copyrights to the materials and information herein. The materials
and information contained herein constitute confidential information of Critical Manufacturing and
the Customer must not disclose or transfer by any means any of these materials or information,
whether total or partial, to any third party without the prior explicit consent by Critical
Manufacturing.

Copyright Information

All title and copyrights in and to the Software (including but not limited to any source code,
binaries, designs, specifications, models, documents, layouts, images, photographs, animations,
video, audio, music, text incorporated into the Software), the accompanying printed materials,
and any copies of the Software, and any trademarks or service marks of Critical Manufacturing
are owned by Critical Manufacturing unless explicitly stated otherwise. All title and intellectual
property rights in and to the content that may be accessed through use of the Software is the
property of the respective content owner and is protected by applicable copyright or other
intellectual property laws and treaties.

Trademark Information

Critical Manufacturing is a registered trademark of Critical Manufacturing.

All other trademarks are property of their respective owners.

Copyright © 2023 Critical Manufacturing. All rights reserved.

