
Page 1 of 11

Automation Business Scenario - Basic Scenario

Estimated time to read: 11 minutes

The business scenarios is a framework and execution engine that allows the user to construct, via

metadata and through user interaction, complex �ows in order to perform actions in the MES system.

This document will guide you through the process of creating a scenario for a particular use case.

Overview

In this tutorial the goal is to create a scenario that will query the user for the Automation Managers he

wishes to Deploy.

For this tutorial, only the MES UI will be used, nevertheless it is strongly advised for the user to use the CM CLI. The

CLI allows generating a package for IoT and to create customization packages that hold the Automation Business

Scenarios . Using the visual studio code extension Automation Business Scenarios Renderer, is also helpful as it

provides a language formatter for the Business Scenario Structure and a diagram renderer in mermaid chart ⧉ of the

scenario.

Building a Scenario

The �rst step in building a scenario is de�ning the decision tree for the user. For this tutorial the end goal

is to have a list of Automation Managers, that are of type Automatic Deploy and are not in the state Ready

(which means they can be deployed), and perform the deployment.

The user may interact with the scenario in two fashions, he can provide a list of comma separated

Automation Managers (this will be a Manual mode) or he can choose the managers from a list (the

Interactive mode).

De�ning a Scope

One of the important parts of a scenario is de�ning what context or scope it should be available to execute.

For this tutorial, the scope is de�ned when the user is in the page listing the Automation Managers, so the

scope will be Entity/AutomationManager .

Validating the User

A condition to be able to deploy the Automation Manager is for the user to be an Integration User .

Therefore, the �rst step must be to do this validation and store the user (The user will be needed later in

order to execute the deploy).

The �rst step must be de�ned as the value for the start . The step will be of type Script and will execute a

simple script to check if the user is an integration user. It will also store the user using the resultKey in the

key selectedUser .

Info

{
 "metadata": {
 "start": "CheckIfUserIsIntegrationUser",

https://criticalmanufacturing.github.io/cli/
https://marketplace.visualstudio.com/items?itemName=CriticalManufacturing.automation-business-scenarios-vscode
https://www.mermaidchart.com/
file:///app/site_online/zh/userguide/automation/administration/automation-business-scenario/building-scenarios/structure/steps/script/

Page 2 of 11

Interaction Modes

One of the features that the tutorial must support is the two modes:

1. Manual mode where the user speci�es a list of comma separated Automation Managers

2. Interactive mode that prompts the user to choose a manager from a list

The scenario will ask a question of the user with two options: Manual , Interactive , using the step type

Question. The user will choose one of the options, by choosing an option the scenario can introduce forks

in the �ow using the step type Condition.

In the step type Condition, the next key will act as the default result if no condition is matched. In a case, where the

result should match always one of the options, the user should terminate the scenario with an error message.

 "steps": [
 {
 "name": "CheckIfUserIsIntegrationUser",
 "type": "Script",
 "resultKey": "selectedUser",
 "settings": {
 "script": [
 "if(!this.securityService.user.IsIntegrationUser) {",
 " throw new Error('This scenario can only be executed by a User that is
an Integration User');",
 "}",
 "this.securityService.user"
]
 },
 "next": "Mode"
 }
]
 }
}

Note

{
 "metadata": {
 (...)
 "steps": [
 (...)
 {
 "name": "Mode",
 "type": "Question",
 "resultKey": "selectionMode",
 "settings": {
 "message": "Do you wish to have a manual selection with ',' separated Manager
Names or the interactive mode?",
 "dataType": "Enum",
 "settings": {
 "enumValues": [
 "Manual",
 "Interactive"
]
 },
 "defaultValue": "Interactive"
 },
 "next": "ModeCondition"
 },
 {
 "name": "ModeCondition",
 "type": "Condition",
 "settings": {
 "condition": {
 "selectionMode == 'Manual'": "CommaSeparatedManagers",

file:///app/site_online/zh/userguide/automation/administration/automation-business-scenario/building-scenarios/structure/steps/question/
file:///app/site_online/zh/userguide/automation/administration/automation-business-scenario/building-scenarios/structure/steps/condition/
file:///app/site_online/zh/userguide/automation/administration/automation-business-scenario/building-scenarios/structure/steps/condition/

Page 3 of 11

Handling Manual Mode

When the user chooses the Manual mode, the scenario should ask a question and extract the comma

separated list of managers. For the Manual mode this will be the end of the scenario.

Handling Interaction Mode

When the user chooses the Interactive mode the scenario should give the user a list of possible

managers to select from (The user may choose several Automation Managers) and add it to the selected

managers list.

Notice the reference to ${script(....ts)} the use of the CLI allows for the user to have more complex scripts in

di�erent �les. The scripts will then be converted to Base64 when the customization package is run with cmf pack .

Let's create a script with a Query Object . This query will retrieve all Automation Managers that weren't

already selected, not Terminated , have deployment mode AutomaticDeploy and are not in state Ready .

After each reply, the result is stored.

Here is the script de�ned above as scripts/mass-deploy/managers_to_deploy.ts :

 "selectionMode == 'Interactive'": "SelectManagerToDeploy"
 }
 },
 "next": "Error"
 },
 {
 "name": "Error",
 "type": "Script",
 "settings": {
 "script": [
 "throw new Error('Something went wrong with this scenario.')"
]
 },
 "next": ""
 }
]
 }
}

{
 "metadata": {
 (...)
 "steps": [
 (...)
 {
 "name": "CommaSeparatedManagers",
 "type": "Question",
 "resultKey": "managersToDeployComma",
 "settings": {
 "message": "Please provide a list of Manager Names, separated by ','.",
 "dataType": "String"
 },
 "next": ""
 }
}

Note

scripts/mass-deploy/managers_to_deploy.ts

const filterCollection = new Cmf.Foundation.BusinessObjects.QueryObject.FilterCollection();

// Selected Manager Filters

Page 4 of 11

if (this.answers.selectedManagers != null && this.answers.selectedManagers.length > 0) {
 this.answers.selectedManagers.forEach(selectedManager => {
 const filterManagerAlreadySelected = new
Cmf.Foundation.BusinessObjects.QueryObject.Filter();
 filterManagerAlreadySelected.Name = "Name";
 filterManagerAlreadySelected.ObjectName = "AutomationManager";
 filterManagerAlreadySelected.ObjectAlias = "AutomationManager_1";
 filterManagerAlreadySelected.Operator = Cmf.Foundation.Common.FieldOperator.IsNotEqualTo;
 filterManagerAlreadySelected.Value = selectedManager.Name;
 filterManagerAlreadySelected.LogicalOperator =
Cmf.Foundation.Common.LogicalOperator.Nothing;
 filterManagerAlreadySelected.FilterType =
Cmf.Foundation.BusinessObjects.QueryObject.Enums.FilterType.Normal;
 filterCollection.push(filterManagerAlreadySelected);
 });
}

// Filter filter_0
const filter_0 = new Cmf.Foundation.BusinessObjects.QueryObject.Filter();

filter_0.Name = "UniversalState";
filter_0.ObjectName = "AutomationManager";
filter_0.ObjectAlias = "AutomationManager_1";
filter_0.Operator = Cmf.Foundation.Common.FieldOperator.IsNotEqualTo;
filter_0.Value = Cmf.Foundation.Common.Base.UniversalState.Terminated;
filter_0.LogicalOperator = Cmf.Foundation.Common.LogicalOperator.AND;
filter_0.FilterType = Cmf.Foundation.BusinessObjects.QueryObject.Enums.FilterType.Normal;

filterCollection.push(filter_0);

// Filter filter_1
const filter_1 = new Cmf.Foundation.BusinessObjects.QueryObject.Filter();

filter_1.Name = "DeploymentMode";
filter_1.ObjectName = "AutomationManager";
filter_1.ObjectAlias = "AutomationManager_1";
filter_1.Operator = Cmf.Foundation.Common.FieldOperator.IsEqualTo;
filter_1.Value = Cmf.Foundation.BusinessObjects.AutomationManagerDeploymentMode.AutomaticDeploy;
filter_1.LogicalOperator = Cmf.Foundation.Common.LogicalOperator.AND;
filter_1.FilterType = Cmf.Foundation.BusinessObjects.QueryObject.Enums.FilterType.Normal;

filterCollection.push(filter_1);

// Filter filter_2
const filter_2 = new Cmf.Foundation.BusinessObjects.QueryObject.Filter();

filter_2.Name = "DeploymentState";
filter_2.ObjectName = "AutomationManager";
filter_2.ObjectAlias = "AutomationManager_1";
filter_2.Operator = Cmf.Foundation.Common.FieldOperator.IsNotEqualTo;
filter_2.Value = Cmf.Foundation.BusinessObjects.AutomationManagerDeploymentState.Ready;
filter_2.LogicalOperator = Cmf.Foundation.Common.LogicalOperator.AND;
filter_2.FilterType = Cmf.Foundation.BusinessObjects.QueryObject.Enums.FilterType.Normal;

filterCollection.push(filter_2);

const fieldCollection = new Cmf.Foundation.BusinessObjects.QueryObject.FieldCollection();

// Field field_0
const field_0 = new Cmf.Foundation.BusinessObjects.QueryObject.Field();

field_0.Alias = "Id";
field_0.ObjectName = "AutomationManager";
field_0.ObjectAlias = "AutomationManager_1";
field_0.IsUserAttribute = false;
field_0.Name = "Id";
field_0.Position = 0;
field_0.Sort = Cmf.Foundation.Common.FieldSort.NoSort;

// Field field_1
const field_1 = new Cmf.Foundation.BusinessObjects.QueryObject.Field();

field_1.Alias = "Name";

Page 5 of 11

In this case the cycle of questions is done by self referencing, as we can see in the step Iterator . The step

type Foreach can be used to achieve a similar mechanism.

field_1.ObjectName = "AutomationManager";
field_1.ObjectAlias = "AutomationManager_1";
field_1.IsUserAttribute = false;
field_1.Name = "Name";
field_1.Position = 1;
field_1.Sort = Cmf.Foundation.Common.FieldSort.NoSort;

fieldCollection.push(field_0);
fieldCollection.push(field_1);

const query = new Cmf.Foundation.BusinessObjects.QueryObject.QueryObject();

query.Description = "With Automatic Deployment Mode and State different from Ready";
query.EntityTypeName = "AutomationManager";
query.Name = "GetAllAutomationManagersForMassDeployment";
query.Query = new Cmf.Foundation.BusinessObjects.QueryObject.Query();
query.Query.Distinct = false;
query.Query.Filters = filterCollection;
query.Query.Fields = fieldCollection;

query;

{
 "metadata": {
 (...)
 "steps": [
 (...)
 {
 "name": "SelectManagerToDeploy",
 "type": "Question",
 "resultKey": "currentSelectedManager",
 "settings": {
 "message": "Please select an Automation Manager to Deploy:",
 "dataType": "FindEntity",
 "settings": {
 "query": "${script(./scripts/mass-deploy/managers_to_deploy.ts)}"
 }
 },
 "next": "PushManager"
 },
 {
 "name": "PushManager",
 "type": "Script",
 "settings": {
 "script": [
 "if (this.answers.selectedManagers == null) {",
 " this.answers.selectedManagers = [];",
 "}",
 "this.answers.selectedManagers.push(this.answers.currentSelectedManager);"
]
 },
 "next": "DoYouWishToIterate"
 },
 {
 "name": "DoYouWishToIterate",
 "type": "Question",
 "resultKey": "isToIterate",
 "settings": {
 "message": "Do you wish to deploy more Automation Managers?",
 "dataType": "Boolean"
 },
 "next": "Iterator"
 },
 {
 "name": "Iterator",
 "type": "Condition",
 "settings": {
 "condition": {

file:///app/site_online/zh/userguide/automation/administration/automation-business-scenario/building-scenarios/structure/steps/foreach/

Page 6 of 11

End

There are three di�erent end possibilities: MasterData , Script , Custom . The MasterData , generates a

MasterData package, the Script will execute a step of type Script and Custom will execute an arbitrary

step.

For this tutorial, the end will be of type Script. The script will retrieve all the chosen Automation Managers

and change the state of the Automation Manager to Ready . The change requires specifying the user that

is performing this change.

To perform this update, the script will invoke the service FullUpdateObjects , that will allow to edit the

properties of a set of entities of the same type.

Notice how the scripts leverages questions that have been made throughout the scenario, like the user that

is running the scenario and the managers that were chosen. All answers are stored in the answers object.

Here is the script de�ned above as scripts/mass-deploy/mass_deploy.ts :

 "isToIterate == true": "SelectManagerToDeploy",
 "isToIterate == false": ""
 }
 },
 "next": "Error"
 }
}

scripts/mass-deploy/mass_deploy.ts

(async () => {
 const input =
 new
Cmf.Foundation.BusinessOrchestration.GenericServiceManagement.InputObjects.FullUpdateObjectsInput();

 input.Objects = new Map();

 // Parse Managers from Manual mode
 if (this.answers.managersToDeployComma && this.answers.managersToDeployComma !== "") {
 this.answers.selectedManagers =
this.answers.managersToDeployComma.split(",").map(managerName => {
 const manager = new Cmf.Foundation.BusinessObjects.AutomationManager();
 manager.Name = managerName;

 return manager;
 });
 }

 // Iterate each Manager and change the state to Ready and add the user
 for (let automationManager of this.answers.selectedManagers) {

 const inputObject = new
Cmf.Foundation.BusinessOrchestration.GenericServiceManagement.InputObjects.GetObjectByNameInput();

 inputObject.Type = automationManager["$type"] ??
"Cmf.Foundation.BusinessObjects.AutomationManager, Cmf.Foundation.BusinessObjects";
 inputObject.Name = automationManager.Name;
 automationManager = (await this.System.call(inputObject)).Instance;

 const deploymentConfiguration = JSON.parse(automationManager.DeploymentConfiguration ?? "
{}");
 deploymentConfiguration["UserName"] = this.answers.selectedUser.UserName;
 deploymentConfiguration["UserAccount"] = this.answers.selectedUser.UserAccount;

 automationManager.DeploymentConfiguration = JSON.stringify(deploymentConfiguration, null,
"\t");
 automationManager.DeploymentState =
Cmf.Foundation.BusinessObjects.AutomationManagerDeploymentState.Ready;

file:///app/site_online/zh/userguide/automation/administration/automation-business-scenario/building-scenarios/structure/steps/script/
file:///app/site_online/zh/userguide/automation/administration/automation-business-scenario/building-scenarios/structure/steps/script/

Page 7 of 11

Conclusion

This tutorial shows how easy it can be to automate interactions with the MES , by building simple step

based scenarios.

Scenario Diagram

This diagram is rendered using the Automation Business Scenarios Renderer ⧉.

 input.Objects.set(automationManager, new
Cmf.Foundation.BusinessOrchestration.FullUpdateParameters());
 }

 await this.System.call(input);
})();

{
 "end": "DeployManagers",
 "metadata": {
 (...)
 "steps": [
 (...)
 {
 "name": "DeployManagers",
 "type": "Script",
 "settings": {
 "script": "${script(./scripts/mass-deploy/mass_deploy.ts)}"
 },
 "next": ""
 }
}

Note

graph TD
classDef startClass fill: #007ac9, color:#000000;
classDef finallyClass fill: #50b450, color:#000000;
classDef endClass fill: #3b8b3b, color:#000000;
 CheckIfUserIsIntegrationUser["Script:
CheckIfUserIsIntegrationUser
(selectedUser)"] --> Mode
 Mode["Question:
Mode
(selectionMode)"] --> ModeCondition
 ModeCondition["Condition:
ModeCondition"] -->
|"selectionMode == 'Manual'"|CommaSeparatedManagers
 ModeCondition["Condition:
ModeCondition"] -->
|"selectionMode == 'Interactive'"|SelectManagerToDeploy
 SelectManagerToDeploy["Question:
SelectManagerToDeploy
(currentSelectedManager)"] --> PushManager
 PushManager["Script:
PushManager"] --> DoYouWishToIterate
 DoYouWishToIterate["Question:
DoYouWishToIterate
(isToIterate)"] --> Iterator
 Iterator["Condition:
Iterator"] -->
|"isToIterate == true"|SelectManagerToDeploy
 Iterator["Condition:
Iterator"] -->
|"isToIterate == false"|StepExecution["End Step Execution"]:::startClass

https://marketplace.visualstudio.com/items?itemName=CriticalManufacturing.automation-business-scenarios-vscode

Page 8 of 11

Full Scenario (JSON representation):

The json representation showed below, is the one that will be used with the CLI package for business

scenarios.

 StartStep["Start Step"]:::startClass --> CheckIfUserIsIntegrationUser
 EndStep["End Step"]:::endClass --> DeployManagers

{
 "name": "Manager Mass Deploy",
 "description": "Automation Manager Mass Deploy",
 "scopes": "Entity/AutomationManager",
 "conditionType": "JSONata",
 "condition": "",
 "metadata": {
 "start": "CheckIfUserIsIntegrationUser",
 "resultType": "Script",
 "end": "DeployManagers",
 "steps": [
 {
 "name": "CheckIfUserIsIntegrationUser",
 "type": "Script",
 "resultKey": "selectedUser",
 "settings": {
 "script": [
 "if(!this.securityService.user.IsIntegrationUser) {",
 " throw new Error('This scenario can only be executed by a User that is
an Integration User');",
 "}",
 "this.securityService.user"
]
 },
 "next": "Mode"
 },
 {
 "name": "Mode",
 "type": "Question",
 "resultKey": "selectionMode",
 "settings": {
 "message": "Do you wish to have a manual selection with ',' separated Manager
Names or the interactive mode?",
 "dataType": "Enum",
 "settings": {
 "enumValues": [
 "Manual",
 "Interactive"
]
 },
 "defaultValue": "Interactive"
 },
 "next": "ModeCondition"
 },
 {
 "name": "ModeCondition",
 "type": "Condition",
 "settings": {
 "condition": {
 "selectionMode == 'Manual'": "CommaSeparatedManagers",
 "selectionMode == 'Interactive'": "SelectManagerToDeploy"
 }
 },
 "next": "Error"
 },
 {
 "name": "CommaSeparatedManagers",
 "type": "Question",
 "resultKey": "managersToDeployComma",
 "settings": {
 "message": "Please provide a list of Manager Names, separated by ','.",
 "dataType": "String"

Page 9 of 11

 },
 "next": ""
 },
 {
 "name": "SelectManagerToDeploy",
 "type": "Question",
 "resultKey": "currentSelectedManager",
 "settings": {
 "message": "Please select an Automation Manager to Deploy:",
 "dataType": "FindEntity",
 "settings": {
 "query": "${script(./scripts/mass-deploy/managers_to_deploy.ts)}"
 }
 },
 "next": "PushManager"
 },
 {
 "name": "PushManager",
 "type": "Script",
 "settings": {
 "script": [
 "if (this.answers.selectedManagers == null) {",
 " this.answers.selectedManagers = [];",
 "}",
 "this.answers.selectedManagers.push(this.answers.currentSelectedManager);"
]
 },
 "next": "DoYouWishToIterate"
 },
 {
 "name": "DoYouWishToIterate",
 "type": "Question",
 "resultKey": "isToIterate",
 "settings": {
 "message": "Do you wish to deploy more Automation Managers?",
 "dataType": "Boolean"
 },
 "next": "Iterator"
 },
 {
 "name": "Iterator",
 "type": "Condition",
 "settings": {
 "condition": {
 "isToIterate == true": "SelectManagerToDeploy",
 "isToIterate == false": ""
 }
 },
 "next": "Error"
 },
 {
 "name": "DeployManagers",
 "type": "Script",
 "settings": {
 "script": "${script(./scripts/mass-deploy/mass_deploy.ts)}"
 },
 "next": ""
 },
 {
 "name": "Error",
 "type": "Script",
 "settings": {
 "script": [
 "throw new Error('Something went wrong with this scenario.')"
]
 },
 "next": ""
 }
]
 }
}

Page 10 of 11

Full Scenario (UI representation):

In the UI the representation of the scenario can be seen and edited as follows.

Changes in the scenario will immediately impact the scenario execution in the next run.

Also notice that when the script is uploaded to the system, its location references have been overriden with

a transpilation of typescript to javascript and converted to base64, this process is automatic when using

the CLI .

Info

file:///app/site_online/tutorials/images/simple_scenario_edit_ui.png
file:///app/site_online/tutorials/images/simple_scenario_edit_metadata_ui.png

Page 11 of 11

file:///app/site_online/tutorials/images/simple_scenario_edit_metadata_base64_ui.png

