
Page 1 of 8

Data Insights Using Data Cubes

Estimated time to read: 7 minutes

This document will provide a quick guide for the usage of the new Data Platform Data Cubes within the

MES ecosystem.

Overview

Data cubes allow you to e�ciently analyze large datasets by pre-aggregating and organizing data in a

structured format. With CubeJS, we can expose these cubes through a GraphQL API, making data retrieval

seamless and optimized.

In this tutorial, we will explore how to access Data Cubes using CubeJS, integrate them into Grafana via a

custom plugin, and demonstrate a Work-in-Progress (WIP) analysis use case.

Data Manager (GraphQL API)

Our Data Manager provides a GraphQL API for querying Data Cubes e�ciently. The API enables:

Dynamic querying: Retrieve speci�c data without excessive �ltering on the frontend.

Pre-aggregated insights: Avoid slow database queries by leveraging CubeJS optimizations.

Integration with Grafana: Our Grafana plugin connects directly to Data Manager via GraphQL API,

enabling powerful visualizations.

List of Data Cubes

Below are some commonly available data cubes within our Data Manager:

file:///app/site_online/tutorials/images/datamanager_cubes_explore.png

Page 2 of 8

Cube Name Description Use Cases

cube_mater

ial_wip

Latest snapshot of WIP (over last 5 minutes). WIP

Monitoring

material_m

ovement

Tracks the movement/processing of materials through various steps within

it's manufacturing life-cycle, used for calculating Overall Equipment

E�ectiveness (OEE) and analyzing material losses.

Manufacturing

performance

cube_wip_h

istory

WIP history records to understand WIP �ows and analysis of past

constraints.

WIP tracking

wip_state_

distributi

on

Key performance indicators regarding time WIP spent in each state. WIP

Constraints /

bottlenecks

resource_m

aintenance

Detailed tracking and analysis of maintenance operations, allowing insights

into maintenance stages, orders, and calendar events over time.

Maintenance

performance

resourcest

ates

This cube provides detailed tracking and analysis of resource states,

allowing insights into the operational performance, availability, and

reliability of equipment over time.

Machine

performance

resourcest

ates_non_wo

rking_time

s

Describes the resource states during working and non-working times. Machine

performance

Each cube is structured to facilitate e�cient querying based on relevant measures and dimensions.

How to use Data Manager Cubes (Grafana plugin)

To visualize Data Cubes in Grafana, follow these steps:

Step 1: Open Grafana

Navigate to Grafana on Explore section. It will open a query editor.

Critical Manufacturing Grafana instance is accessible at https://{host url}/Grafana .

Step 2: Con�gure the Data Source

Choose the Data Manager - Cubes plugin from the dropdown.

Select Data Manager-Cubes . The plugin is already pre-con�gured with a GraphQL API Endpoint (example:

https://cmf-cubejs-instance.com/graphql).

Page 3 of 8

Step 3: Write a simple Query

In the query editor, input a GraphQL query to fetch cube data (example: WIP status, resource

performance, availability, etc.).

A typical GraphQL query to retrieve data from a cube might look like this:

Select Run Query to preview the results.

Step 4: Visualize the Data

Select Add to dashboard to open a new dashboard with visualization panel.

Select edit on the right side of the panel:

query Query {
cube (limit: 5000,
 where: {resourcestates:{class : {equals: "Process"}}}){
 resourcestates {
 resource_name
 class
 basic_state_up_duration
 basic_state_down_duration
 basic_state_nonscheduled_duration
 calendar_in_utc
 }
 }
}

file:///app/site_online/tutorials/images/datamanager_datasources.png

Page 4 of 8

On top right you may choose the visualization type (Table, Graph, or Bar Chart).

Select apply.

Congrats! You've successfully visualized data from the Data Manager Cubes plugin in Grafana.

Use Case | WIP Analysis

A manufacturing plant needs to track the Work-in-Progress (WIP) status across di�erent production areas.

They want to:

Objective

Monitor how many units are currently in progress.

Identify bottlenecks by analyzing cycle times or WIP build ups.

file:///app/site_online/tutorials/images/datamanager_cubes_query_results.png
file:///app/site_online/tutorials/images/datamanager_visualization_chart.png

Page 5 of 8

Motivation

Ensure smooth production �ow with minimal delays.

To achieve this, we'll leverage the cube_material_wip data cube, which provides insights into the current

WIP status. Moreover, we'll use the cube_wip_history cube to track the history of WIP status changes. If

aiming to analyze cycle times, we may use the wip state distribution cube for instance.

To explore the API, you may also use tools like Postman, or ApiDog (see this link ⧉), sending queries to

https://{host url}/graphql endpoint.

Here are the steps to achieve this:

De�ne the Dashboard Layout

Having the objectives in mind, it seems we need to create 4 visualization panels:

Panel 1: Current WIP Status on selected area

Panel 2: Current WIP Status on selected area per step

Panel 3: WIP History to understand the �ow of WIP

Panel 4: Bottleneck Analysis

Panel 1: Query WIP Status for a Speci�c Area

Retrieve real-time data from the data cubes. We then extract the Queued, InProcess and Processed WIP

using the following GraphQL query:

To achieve the visualization de�ned for Panel 1, we need to apply some transformations in Grafana to the

data. We want to sum all the components of WIP that are in Rework and on Hold. For that we apply the Add

field from calculation option. What this does is to calculate the sum of the following �elds and add the

respective columns:

queued_rework_primaryqty

inprocess_rework_primaryqty

processed_rework_primaryqty

queued_hold_primaryqty

inprocess_hold_primaryqty

processed_hold_primaryqty

query query($area:String){
 cube(limit:5000, where:{cube_material_wip: {area_name: {equals: $area}}}) {
 cube_material_wip {
 area_name
 queued_free_primaryqty
 inprocess_free_primaryqty
 processed_free_primaryqty
 queued_hold_primaryqty
 inprocess_hold_primaryqty
 processed_hold_primaryqty
 queued_rework_primaryqty
 inprocess_rework_primaryqty
 processed_rework_primaryqty
 }
 }
}

https://apidog.com/blog/graphql-request/

Page 6 of 8

For more information about the transformations, see the Grafana documentation here ⧉.

Additionally, we will include two more transformations:

Filter fields by name (to �lter the columns of interest)

Organize fields by name (to rename the columns of interest)

Since we want to monitor WIP status, the end result is the following:

For the plugin to work with Grafana variables you need to map the variables to the query parameters. For more

information, see the GraphQL Plugin documentation here ⧉.

Panel 2: Decompose WIP status by step

Next to WIP status of the selected area, we want to monitor the WIP status per step. We will use the same

query as in Panel 1, but we will add the step name to the query as an output parameter.

You may de�ne thresholds in the thresholds section, if needed.

Panel 3: WIP evolution over time

To monitor the evolution of WIP over time, we'll use the cube_wip_history cube. This cube provides a

history of WIP status changes, allowing us to track the �ow of WIP.

This was the applied query:

Info

Info

Info

query ($area: String, $from: String!, $to: String!) {
 cube(limit: 5000, where: { cube_wip_history: {area_name: {equals: $area}, calendarday:
{inDateRange: [$from, $to]}}}) {
 cube_wip_history{
 inprocess_primaryqty
 processed_primaryqty
 queued_primaryqty
 calendarday {
 value
 }
 area_name
 }

https://grafana.com/docs/grafana/latest/panels/transformations/
file:///app/site_online/tutorials/images/wip_use_case_current_wip_panel.png
https://grafana.com/docs/grafana/latest/dashboards/variables/add-template-variables/

Page 7 of 8

As we can see, we are using the cube_wip_history cube to retrieve the WIP history data for a selected area.

We are also using the calendarday �eld to �lter the data by date range. It is a date �eld that is used to �lter

the data by a date range. The output is a list of WIP status changes over time.

Here is the visualization end result:

Panel 4: Bottleneck Analysis

For this panel, and to compare cycle times with WIP history chart, we have decided to add a visualization

that shows the unit cycle time within the selected area. For this, we will use the material_movement cube to

calculate the unit cycle time for the selected area_name (see image below). Grafana will allow us to de�ne

visual thresholds for the unit cycle time.

 }
}

file:///app/site_online/tutorials/images/wip_use_case_wip_history.png
file:///app/site_online/tutorials/images/wip_use_case_cycle_time_analysis.png

Page 8 of 8

Expected Outcomes

We can now monitor the WIP status of the selected area in real-time, and track the �ow of WIP over time.

Additionally, we can identify area constraints and take data-driven actions to optimize the production

process.

In conclusion, here are the expected outcomes of this use case:

Real-time visibility of WIP across areas and steps.

Identi�cation of potential bottlenecks and constraints.

Improved decision-making for production planning.

This was our �nal dashboard, which is just an example. You can create your own dashboard with the data

cubes that you need.

file:///app/site_online/tutorials/images/wip_use_case_dashboard_layout.png

