Critical
manufacturing

an ASM PT company

Automation Business Scenario -
Basic Scenario

11.2

February 2026

DOCUMENT ACCESS
Public

DISCLAIMER

The contents of this document are under copyright of Critical Manufacturing S.A. it is released on condition that it
shall not be copied in whole, in part or otherwise reproduced (whether by photographic, or any other method) and
the contents therefore shall not be divulged to any person other than that of the addressee (save to other
authorized offices of his organization having need to know such contents, for the purpose for which disclosure is
made) without prior written consent of submitting company.

Automation Business Scenario - Basic Scenario

The business scenarios is a framework and execution engine that allows the user to construct, via
metadata and through user interaction, complex flows in order to perform actions in the MES system.

This document will guide you through the process of creating a scenario for a particular use case.

Overview

In this tutorial the goal will be to create a scenario that will query the user for the Automation Managers he
wishes to Deploy.

') Critical
manufacturing 11.2

©® nfo

For this tutorial, only the MES Ul will be used, nevertheless it is strongly advised for the user to use the CM CLI. The
cLI allows generating a package for 1oT and to create customization packages that hold the Automation Business
Scenarios . Using the visual studio code extension Automation Business Scenarios Renderer, is also helpful as it
provides a language formatter for the Business Scenario Structure and a diagram renderer in mermaid chart & of the

scenario.

Building a Scenario

The first step in building a scenario is defining the decision tree for the user. For this tutorial the end goal
is to have a list of Automation Managers, that are of type Automatic Deploy and are notin the state Ready
(which means they can be deployed), and perform the deployment.

The user may interact with the scenario in two fashions, he can provide a list of comma separated
Automation Managers (this will be a Manual mode) or he can choose the managers from a list (the
Interactive mode).

Defining a Scope

One of the important parts of a scenario is defining in what context or scope it should be available to
execute. For this tutorial, the scope is defined when the user is in the page listing the Automation
Managers, so the scope will be Entity/AutomationManager .

Validating the User

A condition to be able to deploy the Automation Manager is for the user to be an Integration User.
Therefore, the first step must be to validate the user and store the user. The user will be needed later in
order to execute the deploy.

The first step must be defined as the value for the start. The step will be of type Script and will execute a
simple script to check if the user is an integration user. It will also store the user using the resultkey in the
key selectedUser.

"metadata": {
"start": "CheckIfUserIsIntegrationUser",

Page 1 of 11

https://criticalmanufacturing.github.io/cli/
https://marketplace.visualstudio.com/items?itemName=CriticalManufacturing.automation-business-scenarios-vscode
https://www.mermaidchart.com/
file:///app/site_online/userguide/automation/administration/automation-business-scenario/building-scenarios/structure/steps/script/

') Critical
manufacturing 11.2

"steps": [
{
"name": "CheckIfUserIsIntegrationUser",
"type": "Script",
"resultKey'": "selectedUser",
"settings": {

"script": [
"if(!this.securityService.user.IsIntegrationUser) {",
" throw new Error('This scenario can only be executed by a User that is
an Integration User');",

l|}l|
b
"this.securityService.user"
]
1,
"next": "Mode"

Interaction Modes

One of the features that the tutorial must support is the two modes, one that is the Manual mode where
the user specifies a list of comma separated Automation Managers and an Interactive mode that
prompts the user to choose a manager from a list. The scenario will ask a question of the user with two
options: Manual, Interactive, using the step type Question. The user will choose one of the options, by
choosing an option the scenario can introduce forks in the flow, by using the step type Condition.

° Note

In the step type Condition, the next key will act as the default result if no condition is matched. In a case, where the
result should match always one of the options, the user should terminate the scenario with an error message.

{
"metadata": {
Cooo)
"steps": [
Cooo)
{
"name": '"Mode",
"type": "Question",
"resultKey'": "selectionMode",
"settings": {
"message'": "Do you wish to have a manual selection with ',' separated Manager

Names or the interactive mode?",
"dataType": "Enum",
"settings": {

"enumValues": [
"Manual",
"Interactive"
]
1
"defaultValue": "Interactive"
1
"next": "ModeCondition"
1
{
"name": "ModeCondition",

"type": "Condition",
"settings": {
"condition": {

"selectionMode == 'Manual''": "CommaSeparatedManagers",
"selectionMode == 'Interactive'": "SelectManagerToDeploy"
}
1,
"next": "Error"

Page 2 of 11

file:///app/site_online/userguide/automation/administration/automation-business-scenario/building-scenarios/structure/steps/question/
file:///app/site_online/userguide/automation/administration/automation-business-scenario/building-scenarios/structure/steps/condition/
file:///app/site_online/userguide/automation/administration/automation-business-scenario/building-scenarios/structure/steps/condition/

1
{
"name": "Error",
"type": "Script",
"settings": {
"script": [
"throw new Error('Something went wrong with this scenario.')"
]
1
"next": ""
}

Handling Manual Mode

When the user chooses the Manual mode, the scenario should ask a question and extract the comma
separated list of managers. For the Manual mode this will be the end of the scenario.

{
"metadata": {
(o0d)
"steps": [
(o0d)
{
"name": "CommaSeparatedManagers",
"type": "Question",
"resultKey": "managersToDeployComma",
"settings": {
"message": "Please provide a list of Manager Names, separated by ','.",
"dataType": "String"
})
"next": ""
}
}

Handling Interaction Mode

When the user chooses the Interactive mode the scenario should give the user a list of possible
managers to select and add it to the selected managers list. The user may choose several Automation
Managers.

') Critical
manufacturing 11.2

@ Note

Notice the referenceto ${script(....ts)} theuseofthe cLI allows forthe user to have more complex scripts in
different files. The scripts will then be converted to Base64 when the customization package is run with cmf pack.

Let's create a script with a Query object. This query will retrieve all Automation Managers that were not
already selected, that are not Terminated, that have deployment mode AutomaticDeploy and are notin
state Ready . After each reply, the result is stored.

Here is the script defined above as scripts/mass-deploy/managers_to_deploy.ts:

scripts/mass-deploy/managers_to_deploy.ts
const filterCollection = new Cmf.Foundation.BusinessObjects.QueryObject.FilterCollection();

// Selected Manager Filters
if (this.answers.selectedManagers != null && this.answers.selectedManagers.length > 0) {
this.answers.selectedManagers.forEach(selectedManager => {
const filterManagerAlreadySelected = new
Cmf.Foundation.BusinessObjects.QueryObject.Filter();

Page 3 of 11

') Critical
manufacturing 11.2

filterManagerAlreadySelected.Name = "Name";
filterManagerAlreadySelected.ObjectName = "AutomationManager";
filterManagerAlreadySelected.ObjectAlias = "AutomationManager_1";
filterManagerAlreadySelected.Operator = Cmf.Foundation.Common.FieldOperator.IsNotEqualTo;
filterManagerAlreadySelected.Value = selectedManager.Name;
filterManagerAlreadySelected.LogicalOperator =
Cmf.Foundation.Common.LogicalOperator.Nothing;
filterManagerAlreadySelected.FilterType =
Cmf.Foundation.BusinessObjects.QueryObject.Enums.FilterType.Normal;
filterCollection.push(filterManagerAlreadySelected);
s

// Filter filter_0
const filter_0 = new Cmf.Foundation.BusinessObjects.QueryObject.Filter();

filter_0.Name = "UniversalState";

filter_0.0bjectName = "AutomationManager";

filter_0.0bjectAlias = "AutomationManager_1";

filter_0.0perator = Cmf.Foundation.Common.FieldOperator.IsNotEqualTo;

filter_0.Value = Cmf.Foundation.Common.Base.UniversalState.Terminated;
filter_0.LogicalOperator = Cmf.Foundation.Common.LogicalOperator.AND;

filter_0.FilterType = Cmf.Foundation.BusinessObjects.QueryObject.Enums.FilterType.Normal;

filterCollection.push(filter_0);

// Filter filter_1
const filter_1 = new Cmf.Foundation.BusinessObjects.QueryObject.Filter();

filter_1.Name = "DeploymentMode";

filter_1.0bjectName = "AutomationManager";

filter_1.0bjectAlias = "AutomationManager_1";

filter_1.0perator = Cmf.Foundation.Common.FieldOperator.IsEqualTo;

filter_1.Value = Cmf.Foundation.BusinessObjects.AutomationManagerDeploymentMode.AutomaticDeploy;
filter_1l.LogicalOperator = Cmf.Foundation.Common.LogicalOperator.AND;

filter_1.FilterType = Cmf.Foundation.BusinessObjects.QueryObject.Enums.FilterType.Normal;

filterCollection.push(filter_1);

// Filter filter_2
const filter_2 = new Cmf.Foundation.BusinessObjects.QueryObject.Filter();

filter_2.Name = "DeploymentState";

filter_2.0bjectName = "AutomationManager";

filter_2.0bjectAlias = "AutomationManager_1";

filter_2.0perator = Cmf.Foundation.Common.FieldOperator.IsNotEqualTo;

filter_2.Value = Cmf.Foundation.BusinessObjects.AutomationManagerDeploymentState.Ready;
filter_2.LogicalOperator = Cmf.Foundation.Common.LogicalOperator.AND;

filter_2.FilterType = Cmf.Foundation.BusinessObjects.QueryObject.Enums.FilterType.Normal;

filterCollection.push(filter_2);
const fieldCollection = new Cmf.Foundation.BusinessObjects.QueryObject.FieldCollection();

// Field field_0
const field_0 = new Cmf.Foundation.BusinessObjects.QueryObject.Field();

field_0.Alias = "Id";

field_0.0bjectName = "AutomationManager";
field_0.0bjectAlias = "AutomationManager_1";
field_0.IsUserAttribute = false;

field_0.Name = "Id";

field_0.Position = 0;

field_0.Sort = Cmf.Foundation.Common.FieldSort.NoSort;

// Field field_1
const field_1 = new Cmf.Foundation.BusinessObjects.QueryObject.Field();

field_1.Alias = "Name";

field_1.0bjectName = "AutomationManager";
field_1.0bjectAlias = "AutomationManager_1";
field_1.IsUserAttribute = false;
field_1.Name = "Name";

Page 4 of 11

') Critical

field_1.Position = 1;
field_1.Sort = Cmf.Foundation.Common.FieldSort.NoSort;

fieldCollection.push(field_0);
fieldCollection.push(field_1);

const query = new Cmf.Foundation.BusinessObjects.QueryObject.QueryObject();

query.Description = "With Automatic Deployment Mode and State different from Ready";
query.EntityTypeName = "AutomationManager";

query.Name = "GetAllAutomationManagersForMassDeployment";

query.Query = new Cmf.Foundation.BusinessObjects.QueryObject.Query();
query.Query.Distinct = false;

query.Query.Filters = filterCollection;

query.Query.Fields = fieldCollection;

query;

In this case the cycle of questions is done by self referencing, as we can see in the step Iterator.The step
type Foreach can be used to achieve a similar mechanism.

{
"metadata": {
(eod)
"steps": [
(o0d)
{
"name": "SelectManagerToDeploy",
"type'": "Question",
"resultKey": "currentSelectedManager",
"settings": {
"message'": "Please select an Automation Manager to Deploy:",
"dataType": "FindEntity",
"settings": {
"query": "${script(./scripts/mass-deploy/managers_to_deploy.ts)}"
}
}7
"next": "PushManager"
}7
{
"name": "PushManager",
"type": "Script",
"settings": {
"script": [
"if (this.answers.selectedManagers == null) {",
" this.answers.selectedManagers = [];",
"}"7
"this.answers.selectedManagers.push(this.answers.currentSelectedManager);"
]
}7
"next": "DoYouWishToIterate"
}7
{
"name": "DoYouWishToIterate",
"type'": "Question",
"resultKey": "disToIterate",
"settings": {
"message'": "Do you wish to deploy more Automation Managers?",
"dataType": "Boolean"
}7
"next": "Iterator"
}7
{
"name": "Iterator",

"type": "Condition",
"settings": {
"condition": {
"isToIterate == true'": "SelectManagerToDeploy",
"isToIterate == false": ""

}7

manufacturing 11.2

Page 5 of 11

file:///app/site_online/userguide/automation/administration/automation-business-scenario/building-scenarios/structure/steps/foreach/

') Critical
manufacturing 11.2

"next": "Error"

End

There are three different end possibilities: MasterData, Script, Custom.The MasterData, generates a
MasterData package, the script will execute a step of type Script and custom will execute an arbitrary
step.

For this tutorial, the end will be of type Script. The script will retrieve all the chosen Automation Managers
and change the state of the Automation Manager to RrReady . Also, the change requires specifying the user
that is performing this change.

In order to perform this update of the entity, the script will invoke the service FullupdateObjects, that will
allow to edit the properties of a set of entities of the same type.

Notice how the scripts leverages questions that have been made throughout the scenario, like the user that
is running the scenario and the managers that were chosen. All answers are storedi in the answers object.

Here is the script defined above as scripts/mass-deploy/mass_deploy.ts:
scripts/mass-deploy/mass_deploy.ts

(async () => {
const dnput =
new
Cmf.Foundation.BusinessOrchestration.GenericServiceManagement.InputObjects.FullUpdateObjectsInput();

input.Objects = new Map();

// Parse Managers from Manual mode
if (this.answers.managersToDeployComma && this.answers.managersToDeployComma !== "") {
this.answers.selectedManagers =
this.answers.managersToDeployComma.split(",").map(managerName => {
const manager = new Cmf.Foundation.BusinessObjects.AutomationManager();
manager .Name = managerName;

return manager;

s

// Iterate each Manager and change the state to Ready and add the user
for (let automationManager of this.answers.selectedManagers) {

const inputObject = new
Cmf.Foundation.BusinessOrchestration.GenericServiceManagement.InputObjects.GetObjectByNameInput()

inputObject.Type = automationManager["$type"] 27
"Cmf.Foundation.BusinessObjects.AutomationManager, Cmf.Foundation.BusinessObjects";

inputObject.Name = automationManager.Name;

automationManager = (await this.System.call(inputObject)).Instance;

const deploymentConfiguration = JSON.parse(automationManager.DeploymentConfiguration 2?7 "

")
deploymentConfiguration["UserName"] = this.answers.selectedUser.UserName;
deploymentConfiguration["UserAccount"] = this.answers.selectedUser.UserAccount;
automationManager.DeploymentConfiguration = JSON.stringify(deploymentConfiguration, null,
l|\t|l);

automationManager.DeploymentState =
Cmf.Foundation.BusinessObjects.AutomationManagerDeploymentState.Ready;

input.Objects.set(automationManager, new

Cmf.Foundation.BusinessOrchestration.FullUpdateParameters());

}

Page 6 of 11

file:///app/site_online/userguide/automation/administration/automation-business-scenario/building-scenarios/structure/steps/script/
file:///app/site_online/userguide/automation/administration/automation-business-scenario/building-scenarios/structure/steps/script/

await this.System.call(input);

HO;
{
"end": "DeployManagers",
"metadata": {
(eod)
"steps": [
(e0d)
{
"name": "DeployManagers",
"type": "Scri pt" s
"settings": {
"script": "${script(./scripts/mass-deploy/mass_deploy.ts)}"
}7
l|next|l: nn
}
}
Conclusion

Critical
manufacturing 11.2

This tutorial shows how easy it can be to automate interactions with the Mes, by building simple step

based scenarios.

Scenario Diagram

° Note

This diagram is rendered using the Automation Business Scenarios Renderer 1.

graph TD

classDef startClass fill: #007ac9, color:#000000;

classDef finallyClass fill: #50b450, color:#000000;

classDef endClass fill: #3b8b3b, color:#000000;
CheckIfUserIsIntegrationUser["Script:

CheckIfUserIsIntegrationUser

(selectedUser)"] --> Mode
Mode["Question:

Mode

(selectionMode)"] --> ModeCondition
ModeCondition["Condition:

ModeCondition"] -->

|"selectionMode == 'Manual''"|CommaSeparatedManagers
ModeCondition["Condition:

ModeCondition"] -->

|"selectionMode == 'Interactive'"|SelectManagerToDeploy
SelectManagerToDeploy["Question:

SelectManagerToDeploy

(currentSelectedManager)"] --> PushManager
PushManager["Script:

PushManager"] --> DoYouWishToIterate
DoYouWishToIterate["Question:

DoYouWishToIterate

(isToIterate)"] --> Iterator
Iterator["Condition:

Iterator"] -->

|"isToIterate == true'"|SelectManagerToDeploy
Iterator["Condition:

Iterator"] -->

|"isToIterate == false"|StepExecution["End Step Execution"]:::startClass
StartStep["Start Step"]:::startClass --> CheckIfUserIsIntegrationUser

EndStep["End Step"]:::endClass --> DeployManagers

Page 7 of 11

https://marketplace.visualstudio.com/items?itemName=CriticalManufacturing.automation-business-scenarios-vscode

Full Scenario (JSON representation):

The json representation showed bellow is the that will be used with the cLI

package for business

Critical
manufacturing 11.2

scenarios.

"name" :
"description":
"scopes":
"conditionType":
"condition": "",
"metadata": {
"start":
"resultType":
"end":
"steps": [
{
"name" :
l|typell J

"resultKey":

"Manager Mass Deploy",

"Automation Manager Mass Deploy",
"Entity/AutomationManager",

"JSONata",

"CheckIfUserIsIntegrationUser",
"Script",
"DeployManagers",

"CheckIfUserIsIntegrationUser",
"Script",
"selectedUser",

"settings": {
"script": [

an Integration User');",

"if(!this.securityService.user.IsIntegrationUser) {",
" throw new Error('This scenario can only be executed by a User that

"}"7
"this.securityService.user"
]
}7
"next": "Mode"
}7
{
"name": "Mode",
"type'": "Question",
"resultKey": "selectionMode",

"settings": {

"message':

"Do you wish to have a manual selection with

Names or the interactive mode?",

"dataType":

"Enum",

"settings": {

"enumValues": [
"Manual",
"Interactive"

]
}7
"defaultValue": "Interactive"
}7
"next": "ModeCondition"
}7
{
"name": "ModeCondition",
"type'": "Condition",
"settings": {
"condition": {
"selectionMode == 'Manual'": "CommaSeparatedManagers",
"selectionMode == 'Interactive'": "SelectManagerToDeploy"
}
}7
"next": "Error"
}7
{
"name": "CommaSeparatedManagers",
"type": "Question",
"resultKey'": "managersToDeployComma",
"settings": {
"message": "Please provide a list of Manager Names, separated by ','.",
"dataType": "String"
}7
l|nextll: nn
}7
{

',' separated Manager

Page 8 of 11

') Critical
manufacturing 11.2

"name": "SelectManagerloDeploy",
"type'": "Question",
"resultKey": "currentSelectedManager",
"settings": {
"message'": "Please select an Automation Manager to Deploy:",
"dataType": "FindEntity",
"settings": {
"query": "${script(./scripts/mass-deploy/managers_to_deploy.ts)}"

}
}}
"next": "PushManager"
}}
{
"name": "PushManager",
l|typell: l|scr--iptll’
"settings": {
"script": [
"if (this.answers.selectedManagers == null) {",
" this.answers.selectedManagers = [];",
l|}l| B
"this.answers.selectedManagers.push(this.answers.currentSelectedManager);"
]
}}
"next": "DoYouWishToIterate"
}}
{
"name": "DoYouWishToIterate",
"type'": "Question",
"resultKey": "disToIterate",
"settings": {
"message'": "Do you wish to deploy more Automation Managers?",
"dataType": "Boolean"
}}
"next": "Iterator"
}}
{
"name": "Iterator",
"type": "Condition",
"settings": {
"condition": {
"isToIterate == true'": "SelectManagerToDeploy",
"isToIterate == false": ""
}
}}
"next": "Error"
}}
{
"name": "DeployManagers",
l|typell: l|scr--iptll’
"settings": {
"script": "${script(./scripts/mass-deploy/mass_deploy.ts)}"
}}
l|nextll: nn
}}
{
"name": "Error",
l|typell: l|scr--iptll’
"settings": {
"script": [
"throw new Error('Something went wrong with this scenario.')"
]
}}
l|nextll: nn
}

Full Scenario (Ul representation):

In the Ul the representation of the scenario can be seen and edited as follows.

Page 9 of 11

Critical

manufacturing 11.2

©® Info

Changes in the scenario willimmediately impact the scenario execution in the next runs.

Edit Automation Business Scenario

GENERALDATA ~ METADATA

Definition

zt Name: Manager Mass Deploy

Description

Package: @criticalmanufacturing/eonnect-iot-business-scenarios-general

Version: 11.1.0-beta2

enavled: @D

Parameters
* Scopes: ‘ Entity/AutomationManager ‘
* Condition Type: | [SONata -
Condin | \
Comments: ~

Edit Automation Business Scenario

GENERALDATA METADATA

Verzdar “start”: "CheckIfUserIsIntegrationUser”,

“resultType™: "Script”,

“end": "DeployManagers",

“steps™: [

{

“name”: "CheckIfUserIsIntegrationUser™,
"type™: "Script”,
“resultkey”: "selectedUser”,

"script™s
“if(Ithis.securityService.user. IsIntegrationUser) {",
throw new Error(*This scenario can only be executed by a User that is an Integration User');",
e

"this.securityService.user”

1

rext™: “Mode”

“name”: “Mode”,

"type": "Question”,

“resultkey”: “selectionbode”,

“settings”:
“message’
“dataType": "Enum”,
“settines”

“Do you wish to have a manual selection with °,’ separated Manager Names or the interactive mode2”,

Copy to dipboard

Comments:

~

e

Notice also how when the script is uploaded to the system the script location references have been
overriden with a transpilation of typescript to javascript and a conversion to base64, this process is

automatic when using the cLI.

Page 10 of 11

file:///app/site_online/tutorials/images/simple_scenario_edit_ui.png
file:///app/site_online/tutorials/images/simple_scenario_edit_metadata_ui.png

') Critical
manufacturing 11.2

Edit Automation Business Scenario

GENERALDATA METADATA

Metadata:

electManagerToDeploy”,
Question”,
currentselectedManager”,

Please select an Automation Manager to Deploy:",
“FindEntity",
“"settings™: {
"query”:
"Y28uc30gZml sdGVyQ295bGVdG1vbiA9TG51dyBDbWYURNS1bmRNAGvbi SCAXNpbmYzC@a1amVj dHHUUXVI cn1PYmp1Y3QuRm1sdGVyQ295bGVjdG1ubigpOncKLyBgU2Vs THNAZHQE THF UYIA 1 c i
BGahix8ZXJzCmlmKHRoaXMuYWS 2d 2Vy cy 52Zbix1Y3R1ZEThbmFnZXJz ICEOTG51bGug1YgdGhpcy ShbnN3ZXJ 2L nN1bGV]dGVKTWFuYMd 1cnMubGVuZ 3RoIDAgHCkgewoIdGhpc yShbnN3ZX Iz LnN1b
GVIAGVKTWFUYWALCNMUZmOYRWF jaChzZX1Y3R1ZEThbnFnZXTgPT4gewog ICAZICAZTGNvbNNOTHEEP SBUZXCgQ21mLKZVANSKYXRpb24uQnVzak51c3NPYmLY3RZLLF17XI5T21GZWNOLKZpbHR1
€1gpOWogTCAGTCAGTHEUTMF £ ZSAOTCIOVH1 1T sKICAZTCAGTCBAL KO1 amydEShbIUEPSAL QXVeb21hdGLvbk1hbmFnZXT i0uog TCAZICAZTHEUT2 I ZWNBQWXPYXHEPSALQXVEb21hdG 1vbk 1hbmF

NZXIFMSI7C1AgTCAGTCARECSPCGVY YXRVCIAGTENTZ15Gh3VUZGFOaNaUL kNvb1vbi5GakVSZE 9wzXThd69y Lk12Tm9ERXF1YWxUbzsKICAZICAZTCBAL1ZhbHV1 TDRgC2VS ZHNOZHRNYWS hZ2Vy Lk
XIhd69y LkSvdGhpbme 7CAGTCAGICAZECSGalXOTXIUSXB1TDOgO2 1MLk ZvdWSKY

ShbU7CiAgTCAGTCAgeCSHb2dpY2F sT3B1CmFOb3IgPSBDDIYURM 15Db21th24uT(
XRpb24uQnVzah51c 3NPYmp1Y3RzL1F17XI5T23qZWN@LkVudW1zL kZpbHR1c1RSCGUUTmEYbHFS 0wod CHZpbHR 1 ckNvbGx 1Y3Rpb24ucHVzaChaKT SKCXBpOWDSCEovLyBGakx0ZXT gZnl sdGVyXzAK
¥29uc3QgZml sdGVyXzAgPSBUZXCgQ2ImLKZVAWSKYXRpb24uQnVzalis1c NPYmPLY3RZL1F17XI5T21qZWNGLKZpbHR 1.c1gpOwWOKZm] sAGy Xz AUTMF tZSAOTCAVbML 27X ZYWXTAGF8Z5C 7CnZpbHR
1cl@wLkiamVjdEShbHUGPSANQXVOb21hdG1vbk1hbmFnZXInOwpmakx@ZXIFMCSPYmpLY 2RBbGLhcyAOT1CdBAXRVbWFOahouTWFuYWd1c18xI2sKZml SdGVyXZAUT 3B LemFeb3 IgPSBDbHYuRMO 1bm
RhdG1vbi5Db21th24uRml 1bGRPCGVYYXRVC15ICOSVAEVXWF SVGE7CMZPbHRLC181L1ZhbHV1IDAgO2 ImL KZvdWSKYXRpb24UQ29tbguLkIhc2ULVWSpdmVy C2F SUIRhAGUUVGVY bWIUYXR1ZDSKZ
m1SdGVyXzAuTGONaWNhbE9wZXThd6 Oy TDBEQ21mL kZvdWSkYXRpb24uQ20t bhOuL kxvZ21 jYHxPCGVyYXRvCiSBTkQ7CmZ pbHR1< 18ul kZpbHR1C1RS cGUEPSBDbWYURMS1bmRhdG1 vbi5CdXNpbmVz
€@91amVjdHMUUXVL cnlPYmp1Y3QuURWS1bXMURM1SAGVYVH1WZSS0b3 It Yin7CgpmakixeZX IDb2Xs 7N aW9uL nB1c 2g07m] SAGVyXZApOwoK Ly 8gRm1 sAGVy TGZPbHR1C18XCmNVbNNBIGZpbHR1C 18
XTIDBgbmV3TENEZ15Gb3VUZGFBaWouLk11¢21uZXN2T2IqZWNBCy SRAVY&UO1 amvj dC5GaNXAZXToKTS KCmZpbHR 1 ¢ 18XL KShbllL BGOSbHVUAELVZGUNOWpMaKKAZXIFMS5PYmp 1Y 3ROV
111DBEIOF1dGItYXRpb25NYWShZ2Vy Iz sKZm] sdGVyXzEUT2IGZWNBQHXPYXHEPSANQXVAb21hdG1vbk 1hbmF nzXIfHSc7CmzpbHR]c18xL kowzXIhdGoyIDegQ21mL kZvdWskYXRpb24uQ23tbuguL
KZpZWxkT3B1CmFBb3TUSXNF CXVhbFRVOWPMaliX@ZXI FHSSUYWX1ZSACTENE Z1 5Gb3VUZGF8akouL k1¢21uZXN2T2]qZHNACY SBAXRVBWFOAHOUTWFUVA1CKR1CGX Va1 1bnRNb2R1LKF1dGITYXRp
YeR1cGxveTskzZmlsdGVyXzEuTGInakNhbE9WZXIhdGay TDegQ21mL kZvdskYXRpb24u029 thigul kxvz21VHxPCGVyYXRvc15BTkQ7CmZpbHR1C18xLkZpbHR1C1RS CGUEPSBRbWYURMI 1bnRhdG 1

Copy to clipboard

Comments:

Save

Page 11 of 11

file:///app/site_online/tutorials/images/simple_scenario_edit_metadata_base64_ui.png

Legal Information

Disclaimer

The information contained in this document represents the current view of Critical Manufacturing
on the issues discussed as of the date of publication. Because Critical Manufacturing must
respond to changing market conditions, it should not be interpreted to be a commitment on the
part of Critical Manufacturing, and Critical Manufacturing cannot guarantee the accuracy of any
information presented after the date of publication. This document is for informational purposes
only.

Critical Manufacturing makes no warranties, express, implied or statutory, as to the information
herein contained.

Confidentiality Notice

All materials and information included herein are being provided by Critical Manufacturing to its
Customer solely for Customer internal use for its business purposes. Critical Manufacturing retains
all rights, titles, interests in and copyrights to the materials and information herein. The materials
and information contained herein constitute confidential information of Critical Manufacturing and
the Customer must not disclose or transfer by any means any of these materials or information,
whether total or partial, to any third party without the prior explicit consent by Critical
Manufacturing.

Copyright Information

All title and copyrights in and to the Software (including but not limited to any source code,
binaries, designs, specifications, models, documents, layouts, images, photographs, animations,
video, audio, music, text incorporated into the Software), the accompanying printed materials,
and any copies of the Software, and any trademarks or service marks of Critical Manufacturing
are owned by Critical Manufacturing unless explicitly stated otherwise. All title and intellectual
property rights in and to the content that may be accessed through use of the Software is the
property of the respective content owner and is protected by applicable copyright or other
intellectual property laws and treaties.

Trademark Information

Critical Manufacturing is a registered trademark of Critical Manufacturing.

All other trademarks are property of their respective owners.

Copyright © 2023 Critical Manufacturing. All rights reserved.

