
Automation Business Scenario -
Basic Scenario

11.2

February 2026

DOCUMENT ACCESS

Public

DISCLAIMER

The contents of this document are under copyright of Critical Manufacturing S.A. it is released on condition that it
shall not be copied in whole, in part or otherwise reproduced (whether by photographic, or any other method) and
the contents therefore shall not be divulged to any person other than that of the addressee (save to other
authorized offices of his organization having need to know such contents, for the purpose for which disclosure is
made) without prior written consent of submitting company.

Page 1 of 11

Automation Business Scenario - Basic Scenario

Estimated time to read: 11 minutes

The business scenarios is a framework and execution engine that allows the user to construct, via

metadata and through user interaction, complex �ows in order to perform actions in the MES system.

This document will guide you through the process of creating a scenario for a particular use case.

Overview

In this tutorial the goal will be to create a scenario that will query the user for the Automation Managers he

wishes to Deploy.

For this tutorial, only the MES UI will be used, nevertheless it is strongly advised for the user to use the CM CLI. The

CLI allows generating a package for IoT and to create customization packages that hold the Automation Business

Scenarios . Using the visual studio code extension Automation Business Scenarios Renderer, is also helpful as it

provides a language formatter for the Business Scenario Structure and a diagram renderer in mermaid chart ⧉ of the

scenario.

Building a Scenario

The �rst step in building a scenario is de�ning the decision tree for the user. For this tutorial the end goal

is to have a list of Automation Managers, that are of type Automatic Deploy and are not in the state Ready

(which means they can be deployed), and perform the deployment.

The user may interact with the scenario in two fashions, he can provide a list of comma separated

Automation Managers (this will be a Manual mode) or he can choose the managers from a list (the

Interactive mode).

De�ning a Scope

One of the important parts of a scenario is de�ning in what context or scope it should be available to

execute. For this tutorial, the scope is de�ned when the user is in the page listing the Automation

Managers, so the scope will be Entity/AutomationManager .

Validating the User

A condition to be able to deploy the Automation Manager is for the user to be an Integration User .

Therefore, the �rst step must be to validate the user and store the user. The user will be needed later in

order to execute the deploy.

The �rst step must be de�ned as the value for the start . The step will be of type Script and will execute a

simple script to check if the user is an integration user. It will also store the user using the resultKey in the

key selectedUser .

Info

{
 "metadata": {
 "start": "CheckIfUserIsIntegrationUser",

https://criticalmanufacturing.github.io/cli/
https://marketplace.visualstudio.com/items?itemName=CriticalManufacturing.automation-business-scenarios-vscode
https://www.mermaidchart.com/
file:///app/site_online/userguide/automation/administration/automation-business-scenario/building-scenarios/structure/steps/script/

Page 2 of 11

Interaction Modes

One of the features that the tutorial must support is the two modes, one that is the Manual mode where

the user speci�es a list of comma separated Automation Managers and an Interactive mode that

prompts the user to choose a manager from a list. The scenario will ask a question of the user with two

options: Manual , Interactive , using the step type Question. The user will choose one of the options, by

choosing an option the scenario can introduce forks in the �ow, by using the step type Condition.

In the step type Condition, the next key will act as the default result if no condition is matched. In a case, where the

result should match always one of the options, the user should terminate the scenario with an error message.

 "steps": [
 {
 "name": "CheckIfUserIsIntegrationUser",
 "type": "Script",
 "resultKey": "selectedUser",
 "settings": {
 "script": [
 "if(!this.securityService.user.IsIntegrationUser) {",
 " throw new Error('This scenario can only be executed by a User that is
an Integration User');",
 "}",
 "this.securityService.user"
]
 },
 "next": "Mode"
 }
]
 }
}

Note

{
 "metadata": {
 (...)
 "steps": [
 (...)
 {
 "name": "Mode",
 "type": "Question",
 "resultKey": "selectionMode",
 "settings": {
 "message": "Do you wish to have a manual selection with ',' separated Manager
Names or the interactive mode?",
 "dataType": "Enum",
 "settings": {
 "enumValues": [
 "Manual",
 "Interactive"
]
 },
 "defaultValue": "Interactive"
 },
 "next": "ModeCondition"
 },
 {
 "name": "ModeCondition",
 "type": "Condition",
 "settings": {
 "condition": {
 "selectionMode == 'Manual'": "CommaSeparatedManagers",
 "selectionMode == 'Interactive'": "SelectManagerToDeploy"
 }
 },
 "next": "Error"

file:///app/site_online/userguide/automation/administration/automation-business-scenario/building-scenarios/structure/steps/question/
file:///app/site_online/userguide/automation/administration/automation-business-scenario/building-scenarios/structure/steps/condition/
file:///app/site_online/userguide/automation/administration/automation-business-scenario/building-scenarios/structure/steps/condition/

Page 3 of 11

Handling Manual Mode

When the user chooses the Manual mode, the scenario should ask a question and extract the comma

separated list of managers. For the Manual mode this will be the end of the scenario.

Handling Interaction Mode

When the user chooses the Interactive mode the scenario should give the user a list of possible

managers to select and add it to the selected managers list. The user may choose several Automation

Managers.

Notice the reference to ${script(....ts)} the use of the CLI allows for the user to have more complex scripts in

di�erent �les. The scripts will then be converted to Base64 when the customization package is run with cmf pack .

Let's create a script with a Query Object . This query will retrieve all Automation Managers that were not

already selected, that are not Terminated , that have deployment mode AutomaticDeploy and are not in

state Ready . After each reply, the result is stored.

Here is the script de�ned above as scripts/mass-deploy/managers_to_deploy.ts :

 },
 {
 "name": "Error",
 "type": "Script",
 "settings": {
 "script": [
 "throw new Error('Something went wrong with this scenario.')"
]
 },
 "next": ""
 }
]
 }
}

{
 "metadata": {
 (...)
 "steps": [
 (...)
 {
 "name": "CommaSeparatedManagers",
 "type": "Question",
 "resultKey": "managersToDeployComma",
 "settings": {
 "message": "Please provide a list of Manager Names, separated by ','.",
 "dataType": "String"
 },
 "next": ""
 }
}

Note

scripts/mass-deploy/managers_to_deploy.ts

const filterCollection = new Cmf.Foundation.BusinessObjects.QueryObject.FilterCollection();

// Selected Manager Filters
if (this.answers.selectedManagers != null && this.answers.selectedManagers.length > 0) {
 this.answers.selectedManagers.forEach(selectedManager => {
 const filterManagerAlreadySelected = new
Cmf.Foundation.BusinessObjects.QueryObject.Filter();

Page 4 of 11

 filterManagerAlreadySelected.Name = "Name";
 filterManagerAlreadySelected.ObjectName = "AutomationManager";
 filterManagerAlreadySelected.ObjectAlias = "AutomationManager_1";
 filterManagerAlreadySelected.Operator = Cmf.Foundation.Common.FieldOperator.IsNotEqualTo;
 filterManagerAlreadySelected.Value = selectedManager.Name;
 filterManagerAlreadySelected.LogicalOperator =
Cmf.Foundation.Common.LogicalOperator.Nothing;
 filterManagerAlreadySelected.FilterType =
Cmf.Foundation.BusinessObjects.QueryObject.Enums.FilterType.Normal;
 filterCollection.push(filterManagerAlreadySelected);
 });
}

// Filter filter_0
const filter_0 = new Cmf.Foundation.BusinessObjects.QueryObject.Filter();

filter_0.Name = "UniversalState";
filter_0.ObjectName = "AutomationManager";
filter_0.ObjectAlias = "AutomationManager_1";
filter_0.Operator = Cmf.Foundation.Common.FieldOperator.IsNotEqualTo;
filter_0.Value = Cmf.Foundation.Common.Base.UniversalState.Terminated;
filter_0.LogicalOperator = Cmf.Foundation.Common.LogicalOperator.AND;
filter_0.FilterType = Cmf.Foundation.BusinessObjects.QueryObject.Enums.FilterType.Normal;

filterCollection.push(filter_0);

// Filter filter_1
const filter_1 = new Cmf.Foundation.BusinessObjects.QueryObject.Filter();

filter_1.Name = "DeploymentMode";
filter_1.ObjectName = "AutomationManager";
filter_1.ObjectAlias = "AutomationManager_1";
filter_1.Operator = Cmf.Foundation.Common.FieldOperator.IsEqualTo;
filter_1.Value = Cmf.Foundation.BusinessObjects.AutomationManagerDeploymentMode.AutomaticDeploy;
filter_1.LogicalOperator = Cmf.Foundation.Common.LogicalOperator.AND;
filter_1.FilterType = Cmf.Foundation.BusinessObjects.QueryObject.Enums.FilterType.Normal;

filterCollection.push(filter_1);

// Filter filter_2
const filter_2 = new Cmf.Foundation.BusinessObjects.QueryObject.Filter();

filter_2.Name = "DeploymentState";
filter_2.ObjectName = "AutomationManager";
filter_2.ObjectAlias = "AutomationManager_1";
filter_2.Operator = Cmf.Foundation.Common.FieldOperator.IsNotEqualTo;
filter_2.Value = Cmf.Foundation.BusinessObjects.AutomationManagerDeploymentState.Ready;
filter_2.LogicalOperator = Cmf.Foundation.Common.LogicalOperator.AND;
filter_2.FilterType = Cmf.Foundation.BusinessObjects.QueryObject.Enums.FilterType.Normal;

filterCollection.push(filter_2);

const fieldCollection = new Cmf.Foundation.BusinessObjects.QueryObject.FieldCollection();

// Field field_0
const field_0 = new Cmf.Foundation.BusinessObjects.QueryObject.Field();

field_0.Alias = "Id";
field_0.ObjectName = "AutomationManager";
field_0.ObjectAlias = "AutomationManager_1";
field_0.IsUserAttribute = false;
field_0.Name = "Id";
field_0.Position = 0;
field_0.Sort = Cmf.Foundation.Common.FieldSort.NoSort;

// Field field_1
const field_1 = new Cmf.Foundation.BusinessObjects.QueryObject.Field();

field_1.Alias = "Name";
field_1.ObjectName = "AutomationManager";
field_1.ObjectAlias = "AutomationManager_1";
field_1.IsUserAttribute = false;
field_1.Name = "Name";

Page 5 of 11

In this case the cycle of questions is done by self referencing, as we can see in the step Iterator . The step

type Foreach can be used to achieve a similar mechanism.

field_1.Position = 1;
field_1.Sort = Cmf.Foundation.Common.FieldSort.NoSort;

fieldCollection.push(field_0);
fieldCollection.push(field_1);

const query = new Cmf.Foundation.BusinessObjects.QueryObject.QueryObject();

query.Description = "With Automatic Deployment Mode and State different from Ready";
query.EntityTypeName = "AutomationManager";
query.Name = "GetAllAutomationManagersForMassDeployment";
query.Query = new Cmf.Foundation.BusinessObjects.QueryObject.Query();
query.Query.Distinct = false;
query.Query.Filters = filterCollection;
query.Query.Fields = fieldCollection;

query;

{
 "metadata": {
 (...)
 "steps": [
 (...)
 {
 "name": "SelectManagerToDeploy",
 "type": "Question",
 "resultKey": "currentSelectedManager",
 "settings": {
 "message": "Please select an Automation Manager to Deploy:",
 "dataType": "FindEntity",
 "settings": {
 "query": "${script(./scripts/mass-deploy/managers_to_deploy.ts)}"
 }
 },
 "next": "PushManager"
 },
 {
 "name": "PushManager",
 "type": "Script",
 "settings": {
 "script": [
 "if (this.answers.selectedManagers == null) {",
 " this.answers.selectedManagers = [];",
 "}",
 "this.answers.selectedManagers.push(this.answers.currentSelectedManager);"
]
 },
 "next": "DoYouWishToIterate"
 },
 {
 "name": "DoYouWishToIterate",
 "type": "Question",
 "resultKey": "isToIterate",
 "settings": {
 "message": "Do you wish to deploy more Automation Managers?",
 "dataType": "Boolean"
 },
 "next": "Iterator"
 },
 {
 "name": "Iterator",
 "type": "Condition",
 "settings": {
 "condition": {
 "isToIterate == true": "SelectManagerToDeploy",
 "isToIterate == false": ""
 }
 },

file:///app/site_online/userguide/automation/administration/automation-business-scenario/building-scenarios/structure/steps/foreach/

Page 6 of 11

End

There are three di�erent end possibilities: MasterData , Script , Custom . The MasterData , generates a

MasterData package, the Script will execute a step of type Script and Custom will execute an arbitrary

step.

For this tutorial, the end will be of type Script. The script will retrieve all the chosen Automation Managers

and change the state of the Automation Manager to Ready . Also, the change requires specifying the user

that is performing this change.

In order to perform this update of the entity, the script will invoke the service FullUpdateObjects , that will

allow to edit the properties of a set of entities of the same type.

Notice how the scripts leverages questions that have been made throughout the scenario, like the user that

is running the scenario and the managers that were chosen. All answers are storedi in the answers object.

Here is the script de�ned above as scripts/mass-deploy/mass_deploy.ts :

 "next": "Error"
 }
}

scripts/mass-deploy/mass_deploy.ts

(async () => {
 const input =
 new
Cmf.Foundation.BusinessOrchestration.GenericServiceManagement.InputObjects.FullUpdateObjectsInput();

 input.Objects = new Map();

 // Parse Managers from Manual mode
 if (this.answers.managersToDeployComma && this.answers.managersToDeployComma !== "") {
 this.answers.selectedManagers =
this.answers.managersToDeployComma.split(",").map(managerName => {
 const manager = new Cmf.Foundation.BusinessObjects.AutomationManager();
 manager.Name = managerName;

 return manager;
 });
 }

 // Iterate each Manager and change the state to Ready and add the user
 for (let automationManager of this.answers.selectedManagers) {

 const inputObject = new
Cmf.Foundation.BusinessOrchestration.GenericServiceManagement.InputObjects.GetObjectByNameInput();

 inputObject.Type = automationManager["$type"] ??
"Cmf.Foundation.BusinessObjects.AutomationManager, Cmf.Foundation.BusinessObjects";
 inputObject.Name = automationManager.Name;
 automationManager = (await this.System.call(inputObject)).Instance;

 const deploymentConfiguration = JSON.parse(automationManager.DeploymentConfiguration ?? "
{}");
 deploymentConfiguration["UserName"] = this.answers.selectedUser.UserName;
 deploymentConfiguration["UserAccount"] = this.answers.selectedUser.UserAccount;

 automationManager.DeploymentConfiguration = JSON.stringify(deploymentConfiguration, null,
"\t");
 automationManager.DeploymentState =
Cmf.Foundation.BusinessObjects.AutomationManagerDeploymentState.Ready;

 input.Objects.set(automationManager, new
Cmf.Foundation.BusinessOrchestration.FullUpdateParameters());
 }

file:///app/site_online/userguide/automation/administration/automation-business-scenario/building-scenarios/structure/steps/script/
file:///app/site_online/userguide/automation/administration/automation-business-scenario/building-scenarios/structure/steps/script/

Page 7 of 11

Conclusion

This tutorial shows how easy it can be to automate interactions with the MES , by building simple step

based scenarios.

Scenario Diagram

This diagram is rendered using the Automation Business Scenarios Renderer ⧉.

 await this.System.call(input);
})();

{
 "end": "DeployManagers",
 "metadata": {
 (...)
 "steps": [
 (...)
 {
 "name": "DeployManagers",
 "type": "Script",
 "settings": {
 "script": "${script(./scripts/mass-deploy/mass_deploy.ts)}"
 },
 "next": ""
 }
}

Note

graph TD
classDef startClass fill: #007ac9, color:#000000;
classDef finallyClass fill: #50b450, color:#000000;
classDef endClass fill: #3b8b3b, color:#000000;
 CheckIfUserIsIntegrationUser["Script:
CheckIfUserIsIntegrationUser
(selectedUser)"] --> Mode
 Mode["Question:
Mode
(selectionMode)"] --> ModeCondition
 ModeCondition["Condition:
ModeCondition"] -->
|"selectionMode == 'Manual'"|CommaSeparatedManagers
 ModeCondition["Condition:
ModeCondition"] -->
|"selectionMode == 'Interactive'"|SelectManagerToDeploy
 SelectManagerToDeploy["Question:
SelectManagerToDeploy
(currentSelectedManager)"] --> PushManager
 PushManager["Script:
PushManager"] --> DoYouWishToIterate
 DoYouWishToIterate["Question:
DoYouWishToIterate
(isToIterate)"] --> Iterator
 Iterator["Condition:
Iterator"] -->
|"isToIterate == true"|SelectManagerToDeploy
 Iterator["Condition:
Iterator"] -->
|"isToIterate == false"|StepExecution["End Step Execution"]:::startClass
 StartStep["Start Step"]:::startClass --> CheckIfUserIsIntegrationUser
 EndStep["End Step"]:::endClass --> DeployManagers

https://marketplace.visualstudio.com/items?itemName=CriticalManufacturing.automation-business-scenarios-vscode

Page 8 of 11

Full Scenario (JSON representation):

The json representation showed bellow is the that will be used with the CLI package for business

scenarios.

{
 "name": "Manager Mass Deploy",
 "description": "Automation Manager Mass Deploy",
 "scopes": "Entity/AutomationManager",
 "conditionType": "JSONata",
 "condition": "",
 "metadata": {
 "start": "CheckIfUserIsIntegrationUser",
 "resultType": "Script",
 "end": "DeployManagers",
 "steps": [
 {
 "name": "CheckIfUserIsIntegrationUser",
 "type": "Script",
 "resultKey": "selectedUser",
 "settings": {
 "script": [
 "if(!this.securityService.user.IsIntegrationUser) {",
 " throw new Error('This scenario can only be executed by a User that is
an Integration User');",
 "}",
 "this.securityService.user"
]
 },
 "next": "Mode"
 },
 {
 "name": "Mode",
 "type": "Question",
 "resultKey": "selectionMode",
 "settings": {
 "message": "Do you wish to have a manual selection with ',' separated Manager
Names or the interactive mode?",
 "dataType": "Enum",
 "settings": {
 "enumValues": [
 "Manual",
 "Interactive"
]
 },
 "defaultValue": "Interactive"
 },
 "next": "ModeCondition"
 },
 {
 "name": "ModeCondition",
 "type": "Condition",
 "settings": {
 "condition": {
 "selectionMode == 'Manual'": "CommaSeparatedManagers",
 "selectionMode == 'Interactive'": "SelectManagerToDeploy"
 }
 },
 "next": "Error"
 },
 {
 "name": "CommaSeparatedManagers",
 "type": "Question",
 "resultKey": "managersToDeployComma",
 "settings": {
 "message": "Please provide a list of Manager Names, separated by ','.",
 "dataType": "String"
 },
 "next": ""
 },
 {

" " "S l tM T D l "

Page 9 of 11

Full Scenario (UI representation):

In the UI the representation of the scenario can be seen and edited as follows.

 "name": "SelectManagerToDeploy",
 "type": "Question",
 "resultKey": "currentSelectedManager",
 "settings": {
 "message": "Please select an Automation Manager to Deploy:",
 "dataType": "FindEntity",
 "settings": {
 "query": "${script(./scripts/mass-deploy/managers_to_deploy.ts)}"
 }
 },
 "next": "PushManager"
 },
 {
 "name": "PushManager",
 "type": "Script",
 "settings": {
 "script": [
 "if (this.answers.selectedManagers == null) {",
 " this.answers.selectedManagers = [];",
 "}",
 "this.answers.selectedManagers.push(this.answers.currentSelectedManager);"
]
 },
 "next": "DoYouWishToIterate"
 },
 {
 "name": "DoYouWishToIterate",
 "type": "Question",
 "resultKey": "isToIterate",
 "settings": {
 "message": "Do you wish to deploy more Automation Managers?",
 "dataType": "Boolean"
 },
 "next": "Iterator"
 },
 {
 "name": "Iterator",
 "type": "Condition",
 "settings": {
 "condition": {
 "isToIterate == true": "SelectManagerToDeploy",
 "isToIterate == false": ""
 }
 },
 "next": "Error"
 },
 {
 "name": "DeployManagers",
 "type": "Script",
 "settings": {
 "script": "${script(./scripts/mass-deploy/mass_deploy.ts)}"
 },
 "next": ""
 },
 {
 "name": "Error",
 "type": "Script",
 "settings": {
 "script": [
 "throw new Error('Something went wrong with this scenario.')"
]
 },
 "next": ""
 }
]
 }
}

Page 10 of 11

Changes in the scenario will immediately impact the scenario execution in the next runs.

Notice also how when the script is uploaded to the system the script location references have been

overriden with a transpilation of typescript to javascript and a conversion to base64, this process is

automatic when using the CLI .

Info

file:///app/site_online/tutorials/images/simple_scenario_edit_ui.png
file:///app/site_online/tutorials/images/simple_scenario_edit_metadata_ui.png

Page 11 of 11

file:///app/site_online/tutorials/images/simple_scenario_edit_metadata_base64_ui.png

Legal Information

Disclaimer

The information contained in this document represents the current view of Critical Manufacturing
on the issues discussed as of the date of publication. Because Critical Manufacturing must
respond to changing market conditions, it should not be interpreted to be a commitment on the
part of Critical Manufacturing, and Critical Manufacturing cannot guarantee the accuracy of any
information presented after the date of publication. This document is for informational purposes
only.

Critical Manufacturing makes no warranties, express, implied or statutory, as to the information
herein contained.

Confidentiality Notice

All materials and information included herein are being provided by Critical Manufacturing to its
Customer solely for Customer internal use for its business purposes. Critical Manufacturing retains
all rights, titles, interests in and copyrights to the materials and information herein. The materials
and information contained herein constitute confidential information of Critical Manufacturing and
the Customer must not disclose or transfer by any means any of these materials or information,
whether total or partial, to any third party without the prior explicit consent by Critical
Manufacturing.

Copyright Information

All title and copyrights in and to the Software (including but not limited to any source code,
binaries, designs, specifications, models, documents, layouts, images, photographs, animations,
video, audio, music, text incorporated into the Software), the accompanying printed materials,
and any copies of the Software, and any trademarks or service marks of Critical Manufacturing
are owned by Critical Manufacturing unless explicitly stated otherwise. All title and intellectual
property rights in and to the content that may be accessed through use of the Software is the
property of the respective content owner and is protected by applicable copyright or other
intellectual property laws and treaties.

Trademark Information

Critical Manufacturing is a registered trademark of Critical Manufacturing.

All other trademarks are property of their respective owners.

Copyright © 2023 Critical Manufacturing. All rights reserved.

