
Advanced

11.2

February 2026

DOCUMENT ACCESS

Public

DISCLAIMER

The contents of this document are under copyright of Critical Manufacturing S.A. it is released on condition that it
shall not be copied in whole, in part or otherwise reproduced (whether by photographic, or any other method) and
the contents therefore shall not be divulged to any person other than that of the addressee (save to other
authorized offices of his organization having need to know such contents, for the purpose for which disclosure is
made) without prior written consent of submitting company.

Page 1 of 27

Connect IoT - Advanced Con�guration Tutorial

Estimated time to read: 32 minutes

This tutorial builds upon the (Basic and Intermediate) con�guration tutorial settings and will attempt to

integrate data read from an equipment while applying some work�ow logic to the retrieved value. In the

basic tutorial we had an OPC-UA integration, which connected to an OPC-UA server, in the intermediate we

posted to a Data Collection.

In the Advanced Tutorial , we will �rst make the integration con�gurable in terms of connection settings,

then we will address the scenario where we have a setup of a resource where we set the setpoint to 200ºC

and validate it. When the setpoint reaches the 200ºC the user will be able to perform a Track In and post

the temperature to a Data Collection. After 1 minute it will perform the Track Out of the Material. An

additional requirement is the ability to collect temperature values on demand.

During this tutorial, the Automation Manager will run in console mode in order to highlight the most important

events as they take place.

MES Model

Let's start with building the model for this tutorial:

1. Create a Calendar

2. Create a Facility

3. Create an Area

4. Create a Resource named Oven

5. Create a Step named Oven Step

6. Create a Service Oven Service

a. Add the service to the Resource Services

b. Add the service to the Step Context

7. Create a Flow named Oven Flow with the Oven Step

8. Create a Product named Product Oven

a. Give as default �ow path the Flow Oven Flow and the Step Oven Step

9. Create a Material Oven Material

10. Dispatch the Oven Material to the Resource Oven

If the Oven Material is not dispatchable to the Resource Oven , please revalidate your model.

You can always change the model to what best suits you. This tutorial is not focused in MES modeling so it will be very

brief on this topic. Also, feel free to use the model you have from previous tutorials and add the parts that are missing

from your model.

Note

Note

file:///app/site_online/tutorials/modules/connect-iot-equipment-integration/scenarios/connectiot_configuration_basic/
file:///app/site_online/tutorials/modules/connect-iot-equipment-integration/scenarios/connectiot_configuration_intermediate/

Page 2 of 27

Automation Driver De�nition

Let's go over the Automation Driver De�nition Oven DD and set the properties. In this case we will not

need events, only properties and commands.

Note that to do this in a real life context, it is important to have a general knowledge about the protocol, the

equipment itself and its related documentation.

Properties

Go to Automation Driver Definition , select the Oven DD and then select Edit .

To add the TemperatureSetPoint property:

1. Skip the General Data step

2. Add a new entry to the list of Properties by selecting

3. In the Property details, provide:

A name that represents the Property name

A description

The NodeID - identi�cation of the Property - check the equipment documentation for the actual

identi�cation of the property on the equipment

The type (for classi�cation and reporting purposes)

The Writable and Readable �ags

The data type of the Property in OPC UA format - check the equipment documentation for the actual

data type of the property on the equipment

In this case we have no commands or events. If we chose to add any command of event, they would be

de�ned in the appropriate tabs.

Automation Controller

Note

file:///app/site_online/tutorials/images/connectiot_adv_dd_prop.png

Page 3 of 27

Let's go over the Automation Controller Oven Controller and de�ne the logic that will support the

described scenario.

Setup

First, let's review how we are addressing the setup. Currently, we have the values statically de�ned in the

work�ow, but in order to reuse the same controller for di�erent entities, we need the work�ow to be a bit

more dynamic. Let's start with the following steps:

1. Drag and drop the following tasks:

Get Con�gurations: to retrieve Con�gurations from the system (Administration > Configurations)

Entity Instance: to assess the associated entity

2. Connect the output of OnSetup of the On Equipment Setup task to the Entity Instance active

3. Remove the link of OnInitialize to the connect link

4. In the Get Configurations task:

a. Create input resourceName - Inputs in the Get Configurations can be used as tokens

b. Create output Address

c. Give as path /Custom/ConnectIoT/OPC-UA/${resourceName}/Address - notice ${resourceName} will be

replaced by the de�ned input

d. Type as String

file:///app/site_online/userguide/automation/reference/tasks/core/workflow/actions/task_getconfigurations/
file:///app/site_online/userguide/automation/reference/tasks/core/mes/actions/task_entityinstance/

Page 4 of 27

1. Link the Entity Instance instance to the activate of the Get Configurations

2. Link the Entity Instance instance to the resource name input of the Get Configurations

3. The instance comes with the full object payload and we just need the Name

a. Create converter AnyToAny

b. Create converter GetObjectProperty

i. With path Name

ii. Type String

4. Link the Get Configurations success to connect of the On Equipment Setup task

5. Go to Administration > Configuration

6. Click Create

7. Create con�guration entries until you have the desired path of /Custom/ConnectIoT/OPC-UA/Oven

8. Create the con�g that will hold the value

a. In the Name write Address

b. In the Type select String

c. Set the value with the proper address (i.e opc.tcp://localhost:48101)

file:///app/site_online/tutorials/images/connectiot_adv_getconfig_input.png
file:///app/site_online/tutorials/images/connectiot_adv_getconfig_output.png

Page 5 of 27

9. Link the output Address of the Get Configurations to the OnEquipmentSetup Address input

Now, the hook to determine the address will no longer be the Automation Controller but rather the

con�guration for a particular resource in the con�gurations entry. This is a simple way to make our

controller fully dynamic and in that way promote its reusability throughout di�erent resources of the same

type. There are other mechanisms to hold these values such as saving in Entity Attributes or on a

separate table, both of these are also out of the box supported by tasks, with the Entity Instance task and

the Resolve Table task.

On Demand - Show Temperature

One of the interesting applications of Connect IoT is providing direct feedback to a GUI, in order to have a

more powerful and symbiotic integration between the equipment and the operator. The goal of our GUI is

to be able to retrieve and display the latest temperature value. This is a very simple example, but it will

provide the basic building blocks of the system.

Create a DEE - GetCurrentTemperature

Let's create a DEE to retrieve the Temperature from Connect IoT.

1. Go to Administration > DEE Actions

2. Select New

3. Give as Name GetCurrentTemperature

4. Give Classi�cation ConnectIoT

5. Use the following code:

 // Retrieve Service Provider
 var serviceProvider = (IServiceProvider)Input["ServiceProvider"];

 IResource resource = serviceProvider.GetService<IResource>();

 // Retrieve Resource Name from the Inputs
 resource.Name = Input["Resource"] as string;
 resource.Load();

 var instance = resource.GetAutomationControllerInstance();

 // Validate there's an Automation Controller instance for this resource
 if (instance == null) {
 throw new Exception("Resource not connected to any IoT instance");

file:///app/site_online/tutorials/images/connectiot_adv_config_address.png

Page 6 of 27

In the DEE execution, it will receive a resource name, resolve the instance linked to the resource and send a

message to Connect IoT and wait for a reply.

1. Go to BusinessData > Rule

2. Select New

3. Give as Name GetCurrentTemperature

4. Give as Scope ConnectIoT

5. DEE Action GetCurrentTemperature - if it does not appear in the search box, validate that the DEE

Classi�cation is correct

Automation Controller - Retrieve Temperature

In the Automation Controller it should now, upon the message received from the DEE, retrieve and reply

back with the temperature value.

1. Go to Oven Controller

2. In the Work�ow, create a new page On Demand - Get Temperature

3. Drag and drop the following tasks:

On System Event: to subscribe to the message bus topic Cmf.Request.Temperature

Get Equipment Properties: to get the value of the temperature

4. Go to the On System Event settings and for the Action Group, write Cmf.Request.Temperature .

 }
 else
 {
 // Request value from Connect IoT and wait for the reply
 dynamic payload = instance.SendRequest("Cmf.Request.Temperature", null, 10000);

 Input.Add("Value", payload["reply"].ToString());
 }

file:///app/site_online/tutorials/images/connectiot_adv_rule_getcurrenttemp.png
file:///app/site_online/userguide/automation/reference/tasks/core/core/task_systemevent/
file:///app/site_online/userguide/automation/reference/tasks/core/equipment/actions/task_getequipmentproperties/

Page 7 of 27

5. In the Get Equipment Properties Values task

a. Add as Output, the Automation Property Temperature

6. Link the On System Event output data to the Get Equipment Properties Values Activate input

7. Link the Get Equipment Properties Values Temperature output to the input reply

8. Add a converter AnyToAny

Test with the DEE

Start the OPC UA Server mentioned in the previous (Basic and Intermediate) tutorials and start your

Automation Manager, making sure you have the correct address con�gured in the con�guration entry for

your resource, which in this case should follow along the lines of /Custom/ConnectIoT/OPC-UA/Oven/Address .

Go to the DEE that we have created (GetCurrentTemperature) and select the Execute button. You can now

perform executions of the DEE.

Let's add an input Resource with Value Oven (or whatever Resource you have linked to the controller

instance). Select Execute .

file:///app/site_online/tutorials/images/connectiot_adv_onsysevent_req_temp.png
file:///app/site_online/tutorials/images/connectiot_adv_wf_gettemp.png
file:///app/site_online/tutorials/modules/connect-iot-equipment-integration/scenarios/connectiot_configuration_basic/
file:///app/site_online/tutorials/modules/connect-iot-equipment-integration/scenarios/connectiot_configuration_intermediate/

Page 8 of 27

Notice how we can easily test our implementation with DEEs. Now let's create a GUI.

Create a GUI - Retrieve and Show Temperature

MES supports an out of the box approach to create UI pages directly, in the system, without the need to

code.

1. Go to Administration > UIPages

2. Select New

a. Give the Name Collect Temperatures

b. Press Create

3. Select Edit

4. Drag and drop the following Widgets:

Form : to be able to select a Resource from the system

Button : to trigger the action of getting the temperature

Feel free to go to the settings and give it a friendly name like Get Current Temperature

file:///app/site_online/tutorials/images/connectiot_adv_exec_dee_getcurrtemp.png
file:///app/site_online/tutorials/images/connectiot_adv_exec_dee_getcurrtemp_result.png

Page 9 of 27

Text : to trigger the action of getting the temperature

Feel free to go to the settings and give it a friendly name like Current Temperature

5. In the Form in Settings > Fields

6. Add a �eld Resource

a. Type - ReferenceType

b. Reference type - Entity

c. Reference type name - Resource

7. In the Settings

a. In Properties , we will de�ne the static variables global variables that we will need

i. Add a new property for the GUI to know the DEE to execute

A. Name - DeeName

B. Source - Static

C. Type - String

D. Value - GetCurrentTemperature

ii. Add a new property for the GUI to know the input of the DEE

A. Name - Resource

B. Source - Static

C. Type - String

D. Value - Resource

iii. Add a new property for the GUI to know the value of the input of the DEE

A. Name - [input]Resource

B. Source - Static

C. Type - String

D. Value - Oven (this is just a default value)

iv. Add a new property for the GUI to know the value of the output of the DEE with the temperature

A. Name - Temperature

B. Source - Static

C. Type - String

D. Value - Value (this matches the input we added to the DEE GetCurrentTemperature)

file:///app/site_online/tutorials/images/connectiot_adv_uipg_prop.png

Page 10 of 27

b. In Data Sources , we will de�ne the services we need to call to execute the DEE

i. Add a new datasource for the GUI to Load the DEE to execute

A. Name - LoadDEE

B. Type - ServiceCall

C. Retrieve data on start - false

D. Retrieve data on changes - false

E. Select Settings

I. Choose DynamicExecutionEngine

I. Select GetActionByName

ii. Add a new datasource for the GUI to execute the DEE

A. Name - Request Temperature

B. Type - ServiceCall

C. Retrieve data on start - false

D. Retrieve data on changes - false

E. Show error feedback messages - true

F. Select Settings

I. Choose DynamicExecutionEngine

I. Select ExecuteAction

c. Press Save and Close

8. In the right pane, select Links

a. Drag and drop the Form widget

b. Link the Form output field$ResourceChange to the Page input [input]Resource

i. Add the converter entityName . This will retrieve the Resource name.

c. Drag and drop the LoadDee

d. Link the output of Page DeeName to the input of LoadDee Name

e. Drag and drop the button GetCurrentTemperature

f. Link the button GetCurrentTemperature output OnButtonClick to the input refresh of the LoadDee .

This means that every time you press the button it will refresh this widget

file:///app/site_online/tutorials/images/connectiot_adv_uipg_datasrc.png

Page 11 of 27

g. Drag and drop the widget Request Temperature

h. Connect the output of the Page [input]Resource to the Input Input of the Request Temperature

i. Apply the converter setMapValue with converter parameter Resource . This will associate the

value of the property resource, which in this case is the constant string Resource with the value

of the [input]Resource . Creating a Map of key Resource and value, the value that was fed to the

[input]Resource , in this case the actual resource name.

i. Link the output output$Action of the LoadDee to

i. Action input of the Request Temperature

ii. refresh input of the Request Temperature

j. Drag and drop the widget Text

k. Link the output$Output of the Request Temperature to the input text of the Text widget

l. Apply the converter anyToStringProperty with converter parameter Temperature . This will look into

the output map for a key of the value that is declared in the property Temperature , in this case is

Value .

9. Press Save

The page is now fully usable. Provide a resource to the form that does not have a controller instance you

should see an exception popup as a banner.

If we select the Oven resource and press the button Get Current Temperature we will see now the

temperature is show in the text box.

file:///app/site_online/tutorials/images/connectiot_adv_uipg_links.png

Page 12 of 27

If the DEE has multiple Inputs, the methodology is the same but with multiple links to the input Input .

Set Setpoint - On Resource Begin Setup

The use case can be further built upon if we consider that this value was set externally (e.g. through a

recipe). Right now the focus is just to show the interaction between the system and Connect IoT. The goal is

to have a Setup for a Resource in the MES that can only be complete if the Setpoint is set to 200ºC.

We will create a DEE with the value 200ºC statically de�ned that will send a message to IoT and await

con�rmation in the Resource Complete Setup action. This value could be changed to come from a recipe, a

de�nition in a table, a con�guration or some other de�nition in the system in order to have the

implementation become dynamic.

Create a DEE - SetSetpointTo200

In order to be able to request an action to be performed appended to a system interaction we will need to

create a hook on the action of the Begin Setup. The way to implement this in the MES system is through the

use of DEEs that can be appended in the system actions either in Pre (before execution), or Post (after

execution). These actions are within the transaction of the action performed, so if they give an error the

whole transaction will rollback and maintain consistency in the system.

1. Go to Administration > DEE Actions

2. Select New

3. Give as Name SetSetpointTo200 , for now the classi�cation and action group is not important

The DEE code is split between two important sections. The condition phase and the execution phase. Only

if the condition phase returns with true, will the execution phase be invoked. In the history of an action in

Note

file:///app/site_online/tutorials/images/connectiot_adv_uipg_exec.png

Page 13 of 27

the MES this will also be explicit, if a DEE is appended. For more information on DEEs, see DEE Actions.

The context of the DEE, that is present on the Inputs dictionary, will depend on where the DEE is hooked.

Let's add the Action Group to our DEE.

1. Go to the Details tab

2. Press Add on the Action Group

3. Search for ResourceManagement.ResourceManagementOrchestration.BeginSetup.Post

4. Check it and press Add

If in step 3. the action group is not present:

1. Go to Administration > DEE Actions

2. Select the Settings (three vertical dots) next to the Action Groups

3. Select Add new Action Group

4. Give as Name - ResourceManagement.ResourceManagementOrchestration.BeginSetup.Post

5. Select Create

In order to �nd the action group where we want to append our DEE, you can consult the API documentation

⧉, or analyze the history whenever the action that you are interested is executed and it will be apparent

what are multiple sub-actions that you can append your business logic. Note also that in the DEE in the

code view, in the right pane it Input Parameters , it will now show all available parameters.

Starting on the code for the Test Condition Code . We want to validate that the Inputs that we are

interested are correct, to validate we should process and then pass that value to our DEE context.

 /// <summary>
 /// Summary text: Send Setpoint to IoT on Begin Setup
 /// Actions groups:
 /// * ResourceManagement.ResourceManagementOrchestration.BeginSetup.Post
 /// Depends On:
 /// Is Dependency For:
 /// Exceptions:
 /// </summary>

 var serviceProvider = (IServiceProvider)Input["ServiceProvider"];

 // Validate input
 if (Input["BeginSetupInput"] is not BeginSetupInput beginSetupInput)
 {
 throw new ArgumentNullCmfException("BeginSetupInput");
 }
 return true;

 // Cmf
 UseReference("Cmf.Foundation.Common.dll", "Cmf.Foundation.Common.LocalizationService");
 UseReference("Cmf.Navigo.BusinessOrchestration.dll",
"Cmf.Navigo.BusinessOrchestration.ResourceManagement.InputObjects");
 UseReference("Cmf.Common.CustomActionUtilities.dll", "Cmf.Common.CustomActionUtilities");
 UseReference("Cmf.Common.CustomActionUtilities.dll",
"Cmf.Common.CustomActionUtilities.Abstractions");

 // Other Dependencies
 UseReference("Newtonsoft.Json.dll", "Newtonsoft.Json");

 var serviceProvider = (IServiceProvider)Input["ServiceProvider"];
 var localizationService = serviceProvider.GetService<ILocalizationService>();
 var utilitiesDeeContext = serviceProvider.GetService<IDeeContextUtilities>();

 // Collect inputs
 var resource = (Input["BeginSetupInput"] as BeginSetupInput).Resource as IResource;

file:///app/site_online/userguide/administration/dee_actions/
https://developer.criticalmanufacturing.com/api

Page 14 of 27

Let's take a look at the code execution. The goal is to send a message to Connect IoT, based on the

Resource. In order to perform communication to Connect IoT we will use the message bus through a Send

Request . The Message Bus supports a "�re and forget" method using Publish as well as methods that wait

for a success acknowledgement which is the case of Send Request .

The execution will send the message to the Controller Instance linked to the resource and will wait for the

acknowledge of a reply. It will only succeed if it receives an expected true value.

Set Setpoint - Automation Controller

On the Begin Setup we are now broadcasting a message to the Connect IoT layer. Let's now implement the

logic of performing equipment integration actions with that information. In IoT we will receive the message

and set the setpoint.

1. Go to Oven Controller

2. In the Work�ow, create a new page Manage Setpoint

3. Drag and drop the following tasks:

On System Event: to subscribe to the message bus topic Cmf.Perform.Action

Set Equipment Properties Values: to set the value of temperature setpoint

4. Go to the On System Event settings and for the Action Group, write Cmf.Perform.Action .

5. In the Set Equipment Properties Values

a. Add as Input, the Automation Property TemperatureSetPoint

6. Link the On System Event output data to the Set Equipment Properties Values

a. Activate

b. The TemperatureSetPoint

i. Apply the converter Get Object Property

A. Path Value

B. Type Decimal

7. Link the Set Equipment Properties Values Success to the Reply of the On System Event task

a. Apply the converter AnyToAny

 var instance = resource.GetAutomationControllerInstance();
 if (instance == null) {
 throw new Exception("Resource not connected to any IoT instance");

 }
 else
 {
 string commandMessage = JsonConvert.SerializeObject(
 (
 new Dictionary<string, object>
 {
 { "DEE", "SetSetpoint200" },
 { "Action", "SetSetpoint"},
 { "Value", 200}
 }
), Newtonsoft.Json.Formatting.Indented);
 dynamic payload = instance.SendRequest("Cmf.Perform.Action", commandMessage, 10000);

 if(payload == null) {
 throw new Exception("Nothing received");
 } else if(!bool.Parse(payload["reply"].ToString())) {
 throw new Exception("Setpoint is not 200ºC");
 }
 }

file:///app/site_online/userguide/automation/reference/tasks/core/core/task_systemevent/
file:///app/site_online/userguide/automation/reference/tasks/core/equipment/actions/task_setequipmentproperties/

Page 15 of 27

Test with the Automation

In the Resource Oven , select Begin Setup and press Begin .

Notice that in UA Expert, the tag for the temperature setpoint is now 200ºC as expected.

file:///app/site_online/tutorials/images/connectiot_adv_set_setpoint.png
file:///app/site_online/tutorials/images/connectiot_adv_set_setpoint_oven_begin.png
file:///app/site_online/tutorials/images/connectiot_adv_set_setpoint_oven_begin_iot.png
file:///app/site_online/tutorials/images/connectiot_adv_beginsetup_ua_expert.png

Page 16 of 27

Validate Setpoint - On Resource Complete Setup

In the Begin Setup, we've set the setpoint, but we only want the Complete Setup to be possible if the

temperature matches the setup. We will then use the same DEE to validate the temperature on the

Complete Setup.

Change a DEE - SetSetpointTo200

Let's add the Action Group to our DEE.

1. Go to the Details tab

2. Press Add on the Action Group

3. Search for ResourceManagement.ResourceManagementOrchestration.CompleteSetup.Post

4. Check it and press Add

If in step 3. the action group is not present:

1. Go to Administration > DEE Actions

2. Select the Settings (three vertical dots) next to the Action Groups

3. Select Add new Action Group

4. Give as Name - ResourceManagement.ResourceManagementOrchestration.CompleteSetup.Post

5. Select Create

Perform the steps described in add the Action Group to the DEE.

 /// <summary>
 /// Summary text: Send Setpoint to IoT on Begin Setup
 /// Actions groups:
 /// * ResourceManagement.ResourceManagementOrchestration.BeginSetup.Post
 /// Depends On:
 /// Is Dependency For:
 /// Exceptions:
 /// </summary>

 var serviceProvider = (IServiceProvider)Input["ServiceProvider"];

 // Validate input
 var hasBeginSetup = Input.ContainsKey("BeginSetupInput") && Input["BeginSetupInput"] is
BeginSetupInput;
 var hasCompleteSetup = Input.ContainsKey("CompleteSetupInput") && Input["CompleteSetupInput"]
is CompleteSetupInput;

 if (!hasBeginSetup && !hasCompleteSetup)
 {
 throw new ArgumentNullCmfException("SetupInput");
 }

 return true;

 // Cmf
 UseReference("Cmf.Foundation.Common.dll", "Cmf.Foundation.Common.LocalizationService");
 UseReference("Cmf.Navigo.BusinessOrchestration.dll",
"Cmf.Navigo.BusinessOrchestration.ResourceManagement.InputObjects");

 // Other Dependencies
 UseReference("Newtonsoft.Json.dll", "Newtonsoft.Json");

 var serviceProvider = (IServiceProvider)Input["ServiceProvider"];
 var localizationService = serviceProvider.GetService<ILocalizationService>();

 // Collect inputs
 var hasBeginSetup = Input.ContainsKey("BeginSetupInput") && Input["BeginSetupInput"] is

Page 17 of 27

Notice the big change in the execution. We kept most of our code exactly the same but added a new

context: the action. This action will be used to provide context to the Connect IoT layer to know that in one

situation it must set the setpoint and in another situation it will validate that the temperature is in the

setpoint.

Validate Setpoint - Automation Controller

On the complete setup we are now broadcasting a message to the Connect IoT layer. Let's now validate the

setpoint against the temperature.

1. Go to Oven Controller

2. In the Work�ow, got to page Manage Setpoint

3. Drag and drop the following tasks:

Switch: tto allow us to perform conditional Actions

Get Equipment Properties Values: to set the value of temperature setpoint

Expression Evaluator: to compare the setpoint against the temperature

4. In the Switch task add

a. Input Action of Type String

b. Add Outputs

i. SetSetpoint

BeginSetupInput;
 var resource = hasBeginSetup ? (Input["BeginSetupInput"] as BeginSetupInput).Resource:
(Input["CompleteSetupInput"] as CompleteSetupInput).Resource;
 var action = hasBeginSetup ? "BeginSetup": "CompleteSetup";

 var message = new Dictionary<string, object>
 {
 { "DEE", "SetSetpoint200" },
 { "Value", 200}
 };

 switch(action)
 {
 case "BeginSetup":
 message.Add("Action", "SetSetpoint");
 break;
 case "CompleteSetup":
 message.Add("Action", "ValidateSetpoint");
 break;
 default:
 throw new Exception("Unknow Action");
 }

 var instance = resource.GetAutomationControllerInstance();
 if (instance == null) {
 throw new Exception("Resource not connected to any IoT instance");
 }
 else
 {
 string commandMessage = JsonConvert.SerializeObject(
 (
 message
), Newtonsoft.Json.Formatting.Indented);
 dynamic payload = instance.SendRequest("Cmf.Perform.Action", commandMessage, 10000);

 if(payload == null) {
 throw new Exception("Nothing received");
 } else if(!bool.Parse(payload["reply"].ToString())) {
 throw new Exception("Setpoint is not 200ºC"+payload["reply"].ToString());
 }
 }

file:///app/site_online/userguide/automation/reference/tasks/core/workflow/control_flow/task_switch/
file:///app/site_online/userguide/automation/reference/tasks/core/equipment/actions/task_getequipmentproperties/
file:///app/site_online/userguide/automation/reference/tasks/core/workflow/parsers/task_expressionevaluator/

Page 18 of 27

A. Equals - SetSetpoint

B. Name - SetSetpoint

C. Type - Boolean

D. Value - true

ii. ValidateSetpoint

A. Equals - ValidateSetpoint

B. Name - ValidateSetpoint

C. Type - Boolean

D. Value - true

5. Link the output data to the Switch input Action

a. Apply converter GetObjectProperty

i. Path - Action

ii. Type - String

6. Link the output SetSetpoint to the Activate of the Set Equipment Properties Values task

7. Link the output ValidateSetpoint to the Activate of the Get Equipment Properties Values task

8. In the Expression Evaluator

a. Check the �ag Clear inputs to false

b. Add Inputs

i. Setpoint

A. Name - Setpoint

B. Type - Decimal

C. Default Value - 0

ii. Temperature

A. Name - Temperature

B. Type - Decimal

C. Default Value - 0

c. Add Outputs

i. IsValid

A. Name - IsValid

B. Type - String

C. Expression:

Notice that we are not doing an exact match, this is because the temperature oscillates between

the setpoint. So we are putting a threshold of accepted values.

9. Link the $Temperature output

a. To the input Temperature of the Validate Setpoint task

b. To the input Activate of the Validate Setpoint task

10. Link the output data to the Expression Evaluator input Setpoint

a. Apply converter GetObjectProperty

 abs(Setpoint - Temperature) < 1

Page 19 of 27

i. Path - Value

ii. Type - Decimal

11. Link the Get Equipment Properties Values to the

a. Input $Temperature of the Expression Evaluator

b. Input Activate of the Expression Evaluator

12. Link the Expression Evaluator output IsValid to the input reply of the On System Event

Test with the Automation

In the Resource Oven , if you have already set performed the Begin Setup operation on the Resource,

perform the Complete Setup. If the temperature is now 1+-200ºC you should be successful, if not it will

show an error message.

Post Data - On TrackIn

file:///app/site_online/tutorials/images/connectiot_adv_mng_setpoint_val.png
file:///app/site_online/tutorials/images/connectiot_adv_set_setpoint_oven_complete.png
file:///app/site_online/tutorials/images/connectiot_adv_set_setpoint_oven_complete_iot.png

Page 20 of 27

As we saw when we were collecting values, the temperature varies in a threshold of the setpoint. So we

want to collect the temperature at the time of the TrackIn, to keep track of the temperature that the

material will be exposed at the time of the TrackIn.

One of the important things to consider in a DEE is that it will run every time the action is performed in the

system. In the case that we are addressing we wish to be more speci�c and require that the action be

performed only in particular steps. In order to achieve this, let´s add an attribute in our Step to �ag it as a

Step where we want the logic to execute.

Create a Step Attribute

1. Go to Administration > Entity Types

2. Select the Step

3. In the Attributes, select Manage

4. Press the plus button to add

5. Create a new attribute

a. Name NotifyEQOnTrackIn

b. Scalar Type Bit

c. Update

6. Press the Generate button

7. Go to the Oven Step

8. The attribute NotifyEQOnTrackIn will now be visible under the list of Attributes

9. Edit the attribute and change it to be true

Create a DEE - NotifyIoTOnEquipmentTrackIn

1. Go to Administration > DEE Actions

2. Select New

3. Give as Name NotifyIoTOnEquipmentTrackIn , for now the classi�cation and action group is not important

Let's add the Action Group to our DEE.

1. Go to the Details tab

2. Press Add on the Action Group

3. Search for BusinessObjects.MaterialCollection.TrackIn.Pre

4. Check it and press Add

If in step 3. the action group is not present:

1. Go to Administration > DEE Actions

2. Select the Settings (three vertical dots) next to the Action Groups

3. Select Add new Action Group

4. Give as Name - BusinessObjects.MaterialCollection.TrackIn.Pre

5. Select Create

Starting on the code for the Test Condition Code . We want to validate that the Inputs that we are

interested are correct, then check the Step of the Material to validate whether we should process it and

subsequently pass that value to our DEE context.

 /// <summary>
 /// Summary text: Start production on material track in

Page 21 of 27

In the execution we will iterate through the Materials and for each one we will send a message to the

Controller Instance linked to the Resource of the Material and wait for success. Bear in mind that if the

wait time is very long or if no response is sent back from Connect IoT, the GUI will be in a loading screen

and then eventually timeout, consider always replying back and handling the exception.

By using the resource.GetAutomationControllerInstance(); and using then the instance to do a

instance.SendRequest , you guarantee that only the controller instance associated to this Resource will be noti�ed.

If you want to broadcast every listener consider using the MessageBus native methods.

 /// Actions groups:
 /// * BusinessObjects.MaterialCollection.TrackIn.Pre
 /// Depends On:
 /// Is Dependency For:
 /// Exceptions:
 /// </summary>

 // Retrieve from Dependency Injection Container
 var serviceProvider = (IServiceProvider)Input["ServiceProvider"];

 bool isToExecute = false;

 // Validate Inputs
 if (Input["MaterialCollection"] is not IMaterialCollection materialCollection){
 throw new ArgumentNullCmfException("MaterialCollection");
 }

 if (Input["Resource"] is not IResource resource) {
 throw new ArgumentNullCmfException("Resource");
 }

 resource.Load();

 var step = materialCollection.FirstOrDefault().Step;
 step.LoadAttributes(new Collection<string>() {"NotifyEQOnTrackIn"});

 // Only notify IoT if it's a notifyIoTStep
 if (step.Attributes != null && step.Attributes.ContainsKey("NotifyEQOnTrackIn") &&
(bool)step.Attributes["NotifyEQOnTrackIn"])
 {
 isToExecute = true;
 }

 return isToExecute;

Note

 // Other Dependencies
 UseReference("Newtonsoft.Json.dll", "Newtonsoft.Json");

 // Retrieve from Dependency Injection Container
 var serviceProvider = (IServiceProvider)Input["ServiceProvider"];

 // Collect inputs
 var resource = Input["Resource"] as IResource;
 var materialsToStartProduction = Input["MaterialCollection"] as IMaterialCollection;

 // Iterate through materials and send a message to IoT
 foreach (var Material in materialsToStartProduction)
 {
 string commandMessage = JsonConvert.SerializeObject(
 (
 new Dictionary<string, object>
 {
 { "DEE", "NotifyIoTOnEquipmentTrackIn" },
 { "Action", "PostToDataCollection"}
 }
), Newtonsoft.Json.Formatting.Indented);

Page 22 of 27

In this example, let's choose a generic topic and a more complex payload. It is also correct to use the topic

as the context for the action to be performed like Cmf.Post.Temperature . The goal was to demonstrate a

more complex payload example.

Automation Controller - Implement Post Data

Now that we have a DEE that will notify Connect IoT whenever there is a TrackIn. We will need to create a

listener in the Oven Automation Controller and to perform a Post to the DataCollection.

1. Go to Oven Controller

2. In the Work�ow, create a new page Post Data - OnTrackIn

3. Drag and drop the following tasks:

On System Event: to subscribe to the message bus topic Cmf.Perform.Action

Switch: to allow us to perform conditional Actions

Get Equipment Properties Values: to retrieve the value of temperature

Data Collection: to post data to a Data Collection

4. Go to the On System Event settings and for the Action Group, write Cmf.Perform.Action .

5. Go to the Switch settings

a. Add Input Action as String

b. Add Outputs

i. Equals to PostToDataCollection

ii. Name PostToDataCollection

iii. Type Boolean

iv. Value true

6. Link the On System Event output data to the Switch input Action

a. Apply the converter Get Object Property

i. Path Action

ii. Type `String

7. Link the Switch output PostToDataCollection to the Activate of the Get Equipment Properties Values

8. Go to the Get Equipment Properties Values settings and add in the outputs the Automation Property

Temperature

9. Go to the Data Collection and con�gure like in the Intermediate Connect IoT Tutorial, but change the

Complex Perform Data Collection Mode to Perform To Material

10. Link the Get Equipment Properties Values Temperature output

a. To the Data Collection Temperature input

 var instance = resource.GetAutomationControllerInstance();
 if (instance == null) {
 throw new Exception("Resource not connected to any IoT instance");
 }
 else
 {
 dynamic reply = instance.SendRequest("Cmf.Perform.Action", commandMessage, 10000);

 if(reply == null) {
 throw new Exception("Nothing received");
 }
 }
 }

file:///app/site_online/userguide/automation/reference/tasks/core/core/task_systemevent/
file:///app/site_online/userguide/automation/reference/tasks/core/workflow/control_flow/task_switch/
file:///app/site_online/userguide/automation/reference/tasks/core/equipment/actions/task_getequipmentproperties/
file:///app/site_online/userguide/automation/reference/tasks/mes/task_datacollection/
file:///app/site_online/tutorials/modules/connect-iot-equipment-integration/scenarios/connectiot_configuration_intermediate/

Page 23 of 27

b. To the Data Collection active input

11. Link the Success output of the Data Collection task to the Reply of the On System Event task

12. Link the data output of the OnSystemEvent task to the material of the Data Collection task

a. Apply the converter Get Object Property

i. Path Material

ii. Type String

b. Apply the converter CreateSystemEntity

i. entityType Material

ii. identi�er: Name

Create a Material and Dispatch and TrackIn

Create a Material Oven Material with the Product Product Oven and dispatch it for the Resource Oven .

Now track in the Material at the Resource Oven .

Now, if we go to the collected data of the Material it will show the data collection Temperature Oven with the

value Temperate . Currently, the OPC-UA server is sending a temperature value with a large resolution,

however if you prefer a more readable value feel free to apply an Expression Evaluator task to round up

the value.

file:///app/site_online/tutorials/images/connectiot_adv_postdata_trackin_iot.png
file:///app/site_online/tutorials/images/connectiot_adv_postdata_trackin_mes.png

Page 24 of 27

Automatic TrackOut - After 1 minute

The material was tracked in successfully and we can now say that is being processed. We want to have a

limited amount of time during which the material can be exposed to the setpoint temperature and then

perform a TrackOut directly from the automation. We can use the default services provided out-of-the-box

by the system and custom services, but for this case let's do a similar approach to the GUI. Using a DEE also

allows us the opportunity to do some further customization if we wish to.

Create a DEE - PerformATrackOut

Let's create a DEE to retrieve the Temperature from Connect IoT.

1. Go to Administration > DEE Actions

2. Select New

3. Give as Name PerformATrackOut

4. Give as Classi�cation ConnectIoT

In the DEE execution, which will receive a Material name, load the Material object and execute the

TrackOut.

 // Retrieve Service Provider
 var serviceProvider = (IServiceProvider)Input["ServiceProvider"];

 IMaterial material = serviceProvider.GetService<IMaterial>();

 // Retrieve Material Name from the Inputs
 material.Name = Input["Material"] as string;
 material.Load();

 material.TrackOut();

file:///app/site_online/tutorials/images/connectiot_adv_postdata_trackin_iot_exec.png
file:///app/site_online/tutorials/images/connectiot_adv_postdata_trackin_mes_dc.png

Page 25 of 27

1. Go to BusinessData > Rule

2. Select New

3. Give as Name PerformATrackOut

4. Give as Scope ConnectIoT

5. DEE Action PerformATrackOut - if it does not appear in the search box, validate that the DEE

Classi�cation is correct

Automation Controller - TrackOut Automatically After 1 min

In this implementation we will use the same topic as the TrackIn, we will start a timer that will trigger the

Rule PerformATrackOut after 1 minute. We will require the Material name, but only after a minute, to

perform the TrackOut.

Connect IoT executes the tasks asynchronously, depending on activation time. In cases where we know

before hand that there is a big time frame di�erence and that inputs can be overriden while waiting for the

termination of other tasks, it's strongly recommended to use either the Synchronize task or sub-work�ows.

The sub-work�ows preserve the activation context when activated, so there is no problem to receive the

Material and then wait for 1 minute, as the context for that sub-work�ow will be preserved and further

activations will be new instances of the sub-work�ow. The sub-work�ow has an execution timeout, so the

execution may not exceed that timeout.

1. Go to Oven Controller

2. In the Work�ow, create a new page TrackOut Automatically - After 1 min

3. Drag and drop the following tasks:

On System Event: to subscribe to the message bus topic Cmf.Perform.Action

Switch: to allow us to perform conditional Actions

Work�ow: to execute sub-work�ows

4. Go to the On System Event settings and for the Action Group, write Cmf.Perform.Action .

5. Go to the Switch settings

a. Add Input Action as String

b. Add Outputs

i. Equals to PostToDataCollection

ii. Name PostToDataCollection

iii. Type Boolean

iv. Value true

6. Link the On System Event output data to the Switch input Action

a. Apply the converter Get Object Property

i. Path Action

ii. Type `String

7. In the Work�ow, create a new page Sub - TrackOut Automatically - After 1 min

8. Drag and drop the following tasks:

Start : the start context of the sub-work�ow

End : the end result of the sub-work�ow

Timer : to allow us to perform conditional Actions

Execute Action : to execute sub-work�ows

9. In the Timer task open the Settings

file:///app/site_online/userguide/automation/reference/tasks/core/core/task_systemevent/
file:///app/site_online/userguide/automation/reference/tasks/core/workflow/control_flow/task_switch/
file:///app/site_online/userguide/automation/reference/tasks/core/workflow/control_flow/task_workflow/

Page 26 of 27

a. Set the Auto activate to false

b. Set the interval to 60000

c. Set the Working Mode to Number of Occurrences to 1

10. Link the output Success of the Timer to the Activate of the Execute Action

11. Open the Execute Action settings

a. Select the Rule - PerformATrackOut

b. In the Inputs tab

i. Add a new input

A. Name - Material

B. Type - String

C. Default Value - N/A - can be whatever you wish as it wil be overriden

12. Link the output Material of the task Start to the Material Input of the Execute Action

13. Link the output Success and Error to the matching inputs of the End task

14. Go to the page TrackOut Automatically - After 1 min

15. In the Workflow task settings, select the Automation Workflow Sub - TrackOut Automatically - After 1

min

16. Link the output data of the On System Event to the input Material of the Workflow task

Interestingly, look that we are not replying back, even though the message was a SendRequest , it's not a

problem, because the SendRequest works as a success on the �rst reply, and that will be achieved by the

work�ow Post Data - OnTrackIn .

In order to test, let´s Abort our Material, Dispatch and TrackIn and let´s see the di�erences.

file:///app/site_online/tutorials/images/connectiot_adv_postdata_trackout_subwf.png
file:///app/site_online/tutorials/images/connectiot_adv_postdata_trackout_wf.png

Page 27 of 27

We can still see the previous reply, but now we register a new handler for our TrackOut. Then, after 1

minute:

You now have a built structure using Connect IoT to track the lifecycle of a Material lifecycle, the lifecycle of

a Resource and to collect values. This is the end of the advanced con�guration tutorial.

file:///app/site_online/tutorials/images/connectiot_adv_postdata_trackout_iot_exec.png
file:///app/site_online/tutorials/images/connectiot_adv_postdata_trackout_auto_iot_exec.png
file:///app/site_online/tutorials/images/connectiot_adv_postdata_trackout_mes_finished.png

Legal Information

Disclaimer

The information contained in this document represents the current view of Critical Manufacturing
on the issues discussed as of the date of publication. Because Critical Manufacturing must
respond to changing market conditions, it should not be interpreted to be a commitment on the
part of Critical Manufacturing, and Critical Manufacturing cannot guarantee the accuracy of any
information presented after the date of publication. This document is for informational purposes
only.

Critical Manufacturing makes no warranties, express, implied or statutory, as to the information
herein contained.

Confidentiality Notice

All materials and information included herein are being provided by Critical Manufacturing to its
Customer solely for Customer internal use for its business purposes. Critical Manufacturing retains
all rights, titles, interests in and copyrights to the materials and information herein. The materials
and information contained herein constitute confidential information of Critical Manufacturing and
the Customer must not disclose or transfer by any means any of these materials or information,
whether total or partial, to any third party without the prior explicit consent by Critical
Manufacturing.

Copyright Information

All title and copyrights in and to the Software (including but not limited to any source code,
binaries, designs, specifications, models, documents, layouts, images, photographs, animations,
video, audio, music, text incorporated into the Software), the accompanying printed materials,
and any copies of the Software, and any trademarks or service marks of Critical Manufacturing
are owned by Critical Manufacturing unless explicitly stated otherwise. All title and intellectual
property rights in and to the content that may be accessed through use of the Software is the
property of the respective content owner and is protected by applicable copyright or other
intellectual property laws and treaties.

Trademark Information

Critical Manufacturing is a registered trademark of Critical Manufacturing.

All other trademarks are property of their respective owners.

Copyright © 2023 Critical Manufacturing. All rights reserved.

