
Factory Automation Transport

11.2

February 2026

DOCUMENT ACCESS

Public

DISCLAIMER

The contents of this document are under copyright of Critical Manufacturing S.A. it is released on condition that it
shall not be copied in whole, in part or otherwise reproduced (whether by photographic, or any other method) and
the contents therefore shall not be divulged to any person other than that of the addressee (save to other
authorized offices of his organization having need to know such contents, for the purpose for which disclosure is
made) without prior written consent of submitting company.

Page 1 of 27

Factory Automation Transport

Estimated time to read: 31 minutes

The goal of this tutorial is introduce one of the more common scenarios of the use of the Factory

Automation module, which is the coordination of Fleet Managers. Out of the box, Factory Automation

already provides support for the use and implementation of this scenario.

This tutorial will assume the user already has some familiarity with Factory Automation and has �nished the tutorial

for Factory Automation and all tutorials for Connect IoT.

During this tutorial, the Automation Manager will run in console mode to highlight the most important events as

they take place.

Overview

In this example, we will model a machine that will have a dependency to one �eet manager, which will be

responsible for feeding raw materials to the machine.

This example is focused on showing how Factory Automation module behaves, so details about the MES

model used and custom logic in MES are purely for demonstration purposes and do not serve as examples

to be replicated on productive environments.

Overview of MES Model

In this example, the goal will be to have a material that symbolizes a batch of cookies being processed in a

Resource that will be an Oven, with a Resource LoadPort to receive the container dock/undock and a feeder

for the raw material coal. It will also require a Resource LoadPort that will be the AGV.

Some details, for example, on lookup table names are omitted feel free to add the names that make more sense to

your model.

Creating a Simple MES model

1. Create a Calendar

2. Create a Facility

3. Create an Area

4. Create a Step - Oven

5. Create a Flow with the Step - Oven

6. Create a Resource - Oven

Note

Note

Note

Page 2 of 27

7. Create a Service that will link the Resource Oven to the Step Oven

8. Create a Step - Coal Feed

9. Create a Flow for the Step - Coal Feed

10. Create a Resource Consumable Feed - Coal Feeder

11. Create a Service that links the Resource Coal Feeder with the Step Coal Feed

12. In the Oven Resource, Manage Consumable Feeds and add the Coal Feeder

13. Create a Resource LoadPort - Coal LoadPort

14. Add Resource - Coal LoadPort as SubResource of the Resource - Oven

At the end of these steps, the system will have a Resource - Oven with a Resource LoadPort - Coal

LoadPort and a Resource Consumable Feed - Coal Feeder . It will also have the necessary �ows, steps and

the services to link them both.

Creating Materials

1. Create a Product - Cookies

2. With the Default Start Flow Path the Flow for the Step - Oven

3. Create a Product - Coal

4. With the Default Start Flow Path the Flow for the Step - Coal

5. Create a Material - CookieBatch

6. With Product - Cookie and Quantity - 100

7. Create a Material - Material Coal

8. With the Product - Coal and Quantity - 100

9. Create a Container - CoalContainer001

10. Manage Positions of the Container and add to the CoalContainer001 the Material Material Coal

11. Create BOM - BOM Cookies

12. BOM Item

a. Product - Coal

i. Quantity - 0.3 and Source Step - Coal Feed

13. In the Step - Oven add the BOM Context with the BOM Cookies and Assembly Type - Automatic at Track

In (this assembly type will consume automatically according to the BOM when the Material is tracked

in a Resource)

The model now has a Material - CookieBatch ready to be dispatched to the Resource - Oven . The Oven has

an empty LoadPort and an empty Feeder.

Use Case - Raw Material Replenishing

Overview

The use case of the replenishing will consist on checking if there is any material in the consumable feed

when the material is dispatched. If there is no material in the feeder, request material from the �eet

manager of the raw materials. This a very simple use case, since in real scenarios typically there needs to

be more resolution on when to re�ll and what product will re�ll which consumable feed.

After the job is created, the �eet manager will assign a robot to the job created. It will then pick the

Container - CoalContainer001 with the Material - Material Coal . Next step it will dock the Container in the

Page 3 of 27

load port and then attach the material to the Coal Feeder . The last step will be for the robot to �nish the

job, by returning to a default position.

Request Material

This is the �rst step in the replenishing lifecycle. We will create a DEE Action , that is appended on the Post

of the Dispatch Materials to create a new request material job.

Create Request Material - IoTEventDe�nition

Create an IoT Event De�nition - Request Material to de�ne the structure of the job. It will have the Scope

set to Factory Automation and the properties FleetManager , Resource and ResourceFeeder all de�ned as

string. Notice that here is where we will de�ne all the context the job requires to be able to execute. The

required context to execute will depend on the particular case that is being addressed.

Create a DEE Action - Check If Materials On Feeder On Dispatch

DEE Actions are the mechanism in the MES where we can add customization hooks to default system

functionality. These hooks can be on the beginning of the execution Pre or in the end Post . In this

particular case, we will append in the Post of the service DispatchMaterials .

It's a good practice to add a pre�x for DEEs that are not system made to make it distinguishable (i.e Custom).

1. Go to Administration > DEE Actions

2. Select New

3. Give as Name CheckIfMaterialsOnFeedOnDispatch , for now the classi�cation and action group is not

important

The DEE code is split between two important sections: the condition phase and the execution phase. Only

if the condition phase returns with true, will the execution phase be invoked. In the history of an action (i.e

TrackIn) in the MES, it will be explicit if a DEE was evaluated and eventually if it was executed. For more

information on DEEs, see DEE Actions.

The context of the DEE is present on the Inputs dictionary. This context will depend on to what service the

DEE is appended. The system provides helpful information on what is in the context by expanding the left

pane after adding the action group.

Let's add the Action Group to our DEE.

1. Go to the Details tab

2. select Add on the Action Group

3. Search for MaterialManagement.MaterialManagementOrchestration.DispatchMaterials.Post . If the action

group is not present:

Note

file:///app/site_online/tutorials/images/fa_transport_iot_event_def.png
file:///app/site_online/userguide/administration/dee_actions/

Page 4 of 27

4. Go to Administration > DEE Actions

5. Select the Settings (three vertical dots) next to the Action Groups

6. Select Add new Action Group

7. Give as Name - MaterialManagement.MaterialManagementOrchestration.DispatchMaterials.Post

8. Select Create

9. Check it and select Add

In order to �nd the action group where we want to append our DEE, you can consult the API documentation

⧉, or analyze the history whenever the action that you are interested is executed and it will be apparent

what are multiple sub-actions that you can append your business logic. Note also that in the DEE in the

code view, in the right pane it Input Parameters , it will now show all available parameters.

Starting on the code for the Test Condition Code . We want to validate that the Inputs that we are

interested are correct, to validate we should process and then pass that value to our DEE context.

TestCondition Code:

Execution Code:

 /// <summary>
 /// Summary text: Request Material if Feeder has no consumables
 /// Actions groups:
 /// * MaterialManagement.MaterialManagementOrchestration.DispatchMaterials.Post
 /// Depends On:
 /// Is Dependency For:
 /// Exceptions:
 /// </summary>

 var serviceProvider = (IServiceProvider)Input["ServiceProvider"];
 var utilitiesDEEContext = serviceProvider.GetService<IDeeContextUtilities>();

 // Validate input
 if (Input["DispatchMaterialsInput"] is not DispatchMaterialsInput dispatchMaterialsInput)
 {
 throw new ArgumentNullCmfException("DispatchMaterialsInput");
 }

 // Retrieve resource
 var resource = dispatchMaterialsInput.Materials.FirstOrDefault().Value.Resource;

 utilitiesDEEContext.SetContextParameter("CheckIfMaterialsOnFeedOnDispatch_Inputs", new
Dictionary<string, object>()
 {
 { "CheckIfMaterialsOnFeedOnDispatch_Resource", resource },
 });
 return true;

 // System
 UseReference("", "System.Linq");
 UseReference("", "System.Data");

 // CMF
 UseReference("Cmf.Navigo.BusinessOrchestration.dll",
"Cmf.Navigo.BusinessOrchestration.MaterialManagement.InputObjects");
 UseReference("Cmf.Navigo.BusinessOrchestration.dll",
"Cmf.Navigo.BusinessOrchestration.Abstractions");
 UseReference("Cmf.Foundation.BusinessObjects.dll",
"Cmf.Foundation.BusinessOrchestration.DataPlatform.InputObjects");
 UseReference("Cmf.Foundation.BusinessObjects.dll",
"Cmf.Foundation.BusinessOrchestration.DataPlatform.OutputObjects");
 UseReference("Cmf.Foundation.BusinessOrchestration.dll",
"Cmf.Foundation.BusinessOrchestration.DataPlatform.Domain");
 UseReference("Cmf.Foundation.BusinessOrchestration.dll",
"Cmf.Foundation.BusinessOrchestration.Abstractions");

https://developer.criticalmanufacturing.com/api

Page 5 of 27

 // Common
 UseReference("Cmf.Common.CustomActionUtilities.dll", "Cmf.Common.CustomActionUtilities");
 UseReference("Cmf.Common.CustomActionUtilities.dll",
"Cmf.Common.CustomActionUtilities.Abstractions");
 UseReference("Newtonsoft.Json.dll","Newtonsoft.Json");

 var serviceProvider = (IServiceProvider)Input["ServiceProvider"];
 var deeUtilities = serviceProvider.GetService<IDeeContextUtilities>();
 var entityFactory = serviceProvider.GetService<IEntityFactory>();

 var inputs = deeUtilities.GetContextParameter("CheckIfMaterialsOnFeedOnDispatch_Inputs") as
Dictionary<string, object>;
 var resource = inputs["CheckIfMaterialsOnFeedOnDispatch_Resource"] as IResource;

 // Retrieve Consumable Feeders for the Table for Resource
 INgpDataSet feedersResult = resource.GetConsumableFeeds(null, out _);
 DataSet feedersList = NgpDataSet.ToDataSet(feedersResult);
 IResourceCollection feeders = entityFactory.CreateCollection<IResourceCollection>();

 // Validate Resource has Feeders
 if (feedersList.HasData())
 {
 // Iterate Consumable Feeders for the Resource and Retrieve the Entity values
 foreach (DataRow dataRow in feedersList.Tables[0].Rows)
 {
 string subResourceName = dataRow["SubResourceTargetEntityName"].ToString();
 if (!string.IsNullOrWhiteSpace(subResourceName))
 {
 IResource feeder = entityFactory.Create<IResource>();
 feeder.Name = subResourceName;

 feeders.Add(feeder);
 }
 }

 if (feeders.Any())
 {
 // Load Feeders of the Resource
 feeders.Load();
 // Load Relation between Resource Feeders and Materials
 feeders.LoadRelations("MaterialResource");

 // Retrieve empty feeders
 feeders.Where(feeder =>
!feeder.RelationCollection.ContainsKey("MaterialResource")).ToList().ForEach(feeder => {
 // Post a new Job if Feeder has no Consumables
 // Will create the Request Material Job
 var dataPlatform = serviceProvider.GetService<IDataPlatformManagementOrchestration>
();
 AppProperties appProperties = new AppProperties()
 {
 ApplicationContext = "Transport Request from MES for Request Raw Material",
 ApplicationName = "FleetManager-RawMaterial",
 EventDefinition = "RequestMaterial",
 EventTime = DateTime.Now
 };

 Dictionary<string, object> dataToSend = new Dictionary<string, object>();
 dataToSend.Add("Resource", resource.Name);
 dataToSend.Add("ResourceFeeder", feeder.Name);
 dataToSend.Add("FleetManager", "FleetManager-RawMaterial");

 PostEventInput postEventInput = new PostEventInput
 {
 AppProperties = appProperties,
 Data =
Newtonsoft.Json.Linq.JObject.Parse(JsonConvert.SerializeObject(dataToSend)),
 };
 PostEventOutput postEventOutput = dataPlatform.PostEvent(postEventInput);
 });
 }
 }

Page 6 of 27

The goal is to check if there are feeders without materials attached, then create a new request material job

for each feeder without material.

Now we can dispatch the Material - Cookie Batch and see if there is any job created. In order to check the

Job Queue:

1. Go to the Automation left pane

2. Select Factory Automation

3. Select Views > IoT Events Queue

A job has been created, but it has not been processed. This is expected as currently we have no Factory

Automation worker running and processing jobs and we have no de�nition of what Factory Automation

should do with the request material job.

Create a Factory Automation Worker

The Factory Automation worker will be responsible for consuming and executing jobs from the queue. The

worker will have a limit on how many concurrent jobs can be executed at any given time. It is also

important to understand that jobs assigned to a worker in case of the worker process failing will be

invalidated. It is then a good practice to balance the amount of controllers with workers in your Factory

Automation to mitigate risk.

Create a Factory Automation - Protocol

1. Go to Business Data > Automation Protocol

2. Create New

3. Name FactoryAutomation

4. Select Package for the driver of Factory Automation

5. Select the version available

6. In the Parameters

7. Notice that the maximum concurrent jobs is of 10

8. select Next and Create

Create a Factory Automation - Driver De�nition

1. Go to Business Data > Automation Driver Definition

2. Create New

3. Name FactoryAutomationWorker_DriverDefinition

file:///app/site_online/tutorials/images/fa_transport_queue.png
file:///app/site_online/tutorials/images/fa_transport_protocol.png

Page 7 of 27

4. Select Automation Protocol FactoryAutomation

5. Entity Type Resource

6. select Next and Create

The Factory Automation driver is a particular case where it does not need any further de�nitions on the

driver de�nition.

Create a Factory Automation - Controller

1. Go to Business Data > Automation Controller

2. Create New

3. Name FactoryAutomationWorker_Controller

4. Select Version

5. Entity Type Resource

6. Add Driver De�nition

7. Name Handler

8. Driver De�nition - FactoryAutomationWorker_DriverDefinition

9. select Next and Create

Factory Automation requires access to the database, the recommended way to store passwords in the

system is by using secure strings in the Configuration Entries . For the tutorial either add directly in the

settings the con�gurations of your database or create con�guration entries for each setting and populate

them in the con�gurations. For more information, go to the Get Con�gurations task.

file:///app/site_online/tutorials/images/fa_transport_dd.png
file:///app/site_online/tutorials/images/fa_transport_controller_controller.png
file:///app/site_online/userguide/automation/reference/tasks/core/workflow/actions/task_getconfigurations/

Page 8 of 27

Create a Factory Automation - Controller Instance

1. Create a Resource FactoryAutomationWorker with ProcessingType Component

2. Go to Business Data > Automation Manager

3. Create New

4. Name FactoryAutomation

5. Logical Address FactoryAutomation

6. Select Version

7. Go to Business Data > Automation Controller > FactoryAutomationWorker_Controller

8. select Connect

9. Select the Resource FactoryAutomationWorker and Automation Manager FactoryAutomation

10. In the Drivers also select the Resource FactoryAutomationWorker

11. Go to Business Data > Automation Manager > FactoryAutomation

12. Click Download

13. Run the Automation Manager

a. Unzip the Automation Manager

b. Go to scripts

c. Run StartConsole.bat

file:///app/site_online/tutorials/images/fa_transport_controller_wf.png
file:///app/site_online/tutorials/images/fa_transport_controller_manager.png

Page 9 of 27

In the MES system we can see that the Factory Automation Worker is Communicating and that our job is now

on the Job List .

In the Job List , let's stop the job for now, as we still need the work�ow for the job itself. Select the Job and

select Stop .

Request Material - Create Job Work�ow - Main

1. Go to Business Data > Automation Controller

2. Create New

3. Select Scope FactoryAutomation

4. Add IoTEventDe�nition RequestMaterial

The work�ow for a job must have a start and an end. The work�ow created by default will already place the

tasks On Job Start and JobEnd to signal this requirement. The job is agnostic to any particular driver and

does not communicate to a machine but serves as a lifecycle of actions. The �rst action that we will perform

is notifying whomever is serving the �eet manager.

The Transport Requester task will provide the beginning and the end of the transport. It will notify the

listener of the new job and will wait for a Transport Reply to notify it that the job has �nished. We will drag

and drop the Transport Requester this task will passthrough the job context and give the success or error

of the job. We will also store the FleetManager of the job.

In the scope of this tutorial we will have just the beginning of the transport as a Transport Requester and then

receive information that comes to the �eet manager for the rest of the lifecycle, but depending on your scenario, you

can have as much bi-directional communication as needed.

Note

file:///app/site_online/tutorials/images/fa_transport_controller_communicating.png
file:///app/site_online/tutorials/images/fa_transport_controller_running.png

Page 10 of 27

In order for the jobs to be restartable, you can add a Checkpoint task, with the job context.

Request Material - Create Job Work�ow - Transport Interactions

There are four di�erent actions in the job lifecycle that apply to this use case:

1. Robot Assigned - when the �eet manager assigns a robot

2. Picked Container - when the robot picks a �lled container

3. Drop Container - when the robot docks a container

4. Drop Material - when the material is attached to the feeder

Factory Automation provides an easy way to have touch points between the �eet manager and the job

execution with the task Transport Receiver . Using the Transport Receiver with command Status Update

and the �ag Include Id in Command as true , we receive information and parse it as outputs, for only our

job. The Status Update will be a noti�cation, whereas an Interaction will register a callback. The

interactions are dependent on the �eet manager, so we will have to activate the receiver only when we

know the �eet manager, this is why we stored the �eet manager in the Main work�ow. We will also want to

store which robot is being used in the job execution so we can pass along that context for the other actions.

The �ag Include Id in Command is very important. If the �ag is set as false it means it will be a broadcast to all. If

the �ag is true and the context is inside a controller of scope - Factory Automation, it will not be mandatory to

provide an id, it will inherit it from the job context. If, like the images in this tutorial the id or the setting is not

available, it means you are currently in a version that does not support this feature and the controller will have to

manage this mechanism.

1. Create new page Transport Interactions

2. Use the Retrieve Data

3. Settings

a. Trigger on Store - true

4. Outputs

a. Add

Note

Note

file:///app/site_online/tutorials/images/fa_transport_req_mat_main.png
file:///app/site_online/userguide/automation/reference/tasks/fa/task_fa_checkpoint/

Page 11 of 27

i. Name - FleetManager

ii. Identi�er - FleetManager

iii. Type - String

5. Drag and Drop the Transport Receiver task

6. Settings

a. Auto-Activate - False

b. Command - Status Update

7. Outputs

a. Name - Robot with type String

b. Name - Container with type String

c. Name - Destination with type String

8. Link the Retrieve Data output FleetManager to the input FleetManagerType and to the Activate

9. Now use the Switch task to control the �ow by type

10. Input

a. Name Type

b. Type - String

11. Outputs (the settings pattern is the same for all outputs)

a. RobotAssigned

i. Equals - RobotAssigned

ii. Type - Boolean

iii. Value - true

b. PickedContainer

c. DropContainer

file:///app/site_online/tutorials/images/fa_transport_req_mat_int_receiver.png

Page 12 of 27

d. DropMaterial

Now depending on the type of interaction, the job will perform di�erent actions.

For the RobotAssigned , the job will persist internally that information.

1. Use the Store Data task to store the RobotAssigned

2. Settings

a. Working Mode - StoreOnActive

3. Inputs

a. Add

i. Name - RobotAssigned

ii. Identi�er - RobotAssigned

iii. Type - String

iv. Storage - Temporary

4. Link the Robot output from the task Transport Receiver to the input Robot Assigned of the Store Data

task

5. Link the RobotAssigned output from the task Switch to the input Activate of the Store Data task

For the next actions we will require integration with the MES.

Create a DEE Action - RobotPickedContainer

The DEE Action will be responsible for docking the container selected by the �eet manager in the AGV.

It's a good practice to add a pre�x for DEEs that are not system made to di�erentiate (i.e Custom).

1. Go to Administration > DEE Actions

2. Select New

3. Give as Name RobotPickedContainer

4. Classi�cation ConnectIoT

In this case we will not require an action group, this DEE will not be appended to a system service but will

be execute directly via a business Rule.

Execution Code:

Note

 var serviceProvider = (IServiceProvider)Input["ServiceProvider"];
 var entityFactory = serviceProvider.GetService<IEntityFactory>();

 IContainer container = entityFactory.Create<IContainer>();
 container.Name = Input["Container"] as string;

file:///app/site_online/tutorials/images/fa_transport_req_mat_int_store.png

Page 13 of 27

The code is very simple, we validate the container has materials and then dock it in the robot. If the

container is already docker somewhere else, we will undock it.

Create a Rule to encapsulate the DEE Action:

1. Go to Business Data > Rule

2. Create New

3. Name - RobotPickedContainer

4. Scope - ConnectIoT

5. DEE Action - RobotPickedContainer

6. select Create

Create a DEE Action - RobotDroppedContainer

The DEE Action will be responsible for undocking the container of the AGV and docking to the load port of

the resource. This DEE Action is very similar to what was done previously, nevertheless it was decided to

not merge both to provide clear di�erent hooks. This means that if any further logic is needed we already

have entry points available

1. Go to Administration > DEE Actions

2. Select New

3. Give as Name RobotDroppedContainer

4. Classi�cation ConnectIoT

In this case we will not require an action group, this DEE will not be appended to a system service but will

be execute directly via a business Rule.

Execution Code:

 IResource robot = entityFactory.Create<IResource>();
 robot.Name = Input["Robot"] as string;

 container.Load();
 // Load the relation between the Container and the Materials in the Container
 container.LoadRelations("MaterialContainer");
 robot.Load();

 // Validate: Only Pick filled containers
 if(!container.ContainerMaterials.Any()) {
 throw new Exception("Container must have Materials");
 }

 // If container is docked, undock it
 if(container.ResourceAssociationType == ContainerResourceAssociationType.DockedContainer){
 container.Undock();
 }

 // Dock on Robot
 container.Dock(robot);

 var serviceProvider = (IServiceProvider)Input["ServiceProvider"];

file:///app/site_online/tutorials/images/fa_transport_req_mat_int_robotpick_rule.png

Page 14 of 27

The code is analogous to the RobotPickedContainer, but it this case the container is moved from the robot

in to the Resource Load Port.

Create a Rule to encapsulate the DEE Action:

1. Go to Business Data > Rule

2. Create New

3. Name - RobotDroppedContainer

4. Scope - ConnectIoT

5. DEE Action - RobotDroppedContainer

6. Select Create

Create a DEE Action - RobotDropMaterial

The DEE Action will be responsible for attaching the Material in the Container to the Resource Feeder of

the main resource.

1. Go to Administration > DEE Actions

2. Select New

3. Give as Name RobotDropMaterial

4. Classi�cation ConnectIoT

In this case we will not require an action group, this DEE will not be appended to a system service but will

be execute directly via a business Rule.

Execution Code:

 var entityFactory = serviceProvider.GetService<IEntityFactory>();

 IContainer container = entityFactory.Create<IContainer>();
 container.Name = Input["Container"] as string;

 IResource robot = entityFactory.Create<IResource>();
 robot.Name = Input["Robot"] as string;

 IResource destinationResource = entityFactory.Create<IResource>();
 destinationResource.Name = Input["Destination"] as string;

 container.Load();
 // Load the relation between the Container and the Materials in the Container
 container.LoadRelations("MaterialContainer");
 destinationResource.Load();

 // Validate: Only Drop filled containers
 if(!container.ContainerMaterials.Any()) {
 throw new Exception("Container must have Materials");
 }

 // Undock from Robot
 if(container.ResourceAssociationType == ContainerResourceAssociationType.DockedContainer) {
 container.Undock();
 }

 // Dock on Load Port
 container.Dock(destinationResource);

 var serviceProvider = (IServiceProvider)Input["ServiceProvider"];
 var entityFactory = serviceProvider.GetService<IEntityFactory>();

 IContainer container = entityFactory.Create<IContainer>();
 container.Name = Input["Container"] as string;

 IResource robot = entityFactory.Create<IResource>();

Page 15 of 27

The code is similar to what we saw in the other actions, but in this action we don't want to perform dock or

undock, but we want to retrieve the Materials in the Container and attach them to the Resource Feeder.

Create a Rule to encapsulate the DEE Action:

1. Go to Business Data > Rule

2. Create New

3. Name - RobotDropMaterial

4. Scope - ConnectIoT

5. DEE Action - RobotDropMaterial

6. select Create

Request Material - Create Job Work�ow - Transport Interactions - Actions

Now we can use the DEE Actions in the work�ow of the Job. Going back to the work�ow of the Request

Material Controller in the page Transport Interactions .

1. Drag and drop task Execute Action

2. Description - RobotPickedContainer

3. Settings

a. Rule - RobotPickedContainer

4. Inputs

a. Add

i. Name - Container

ii. Type - String

b. Add

i. Name - Robot

ii. Type - String

5. Link the output Container of the Transport Receiver to the input Container of the Execute Action

RobotPickedContainer

6. Link the output Robot of the Retrieve Data to the input Robot of the Execute Action

RobotDroppedContainer

 robot.Name = Input["Robot"] as string;

 IResource destinationFeeder = entityFactory.Create<IResource>();
 destinationFeeder.Name = Input["Destination"] as string;

 container.Load();
 // Load the relation between the Container and the Materials in the Container
 container.LoadRelations("MaterialContainer");
 destinationFeeder.Load();

 if(!container.ContainerMaterials.Any()) {
 throw new Exception("Container must have Materials");
 } else {

 // Create Input for AttachConsumables
 Dictionary<IMaterial, IAttachConsumableParameters> materialsToAttach = new
Dictionary<IMaterial, IAttachConsumableParameters>();
 foreach(var containerMaterial in container.ContainerMaterials) {
 materialsToAttach.Add(containerMaterial.SourceEntity, new AttachConsumableParameters());
 }

 // Attach Container Materials to the Feeder
 destinationFeeder.AttachConsumables(materialsToAttach);
 }

Page 16 of 27

7. Link the output PickedContainer to the input Activate of the Execute Action RobotPickedContainer

8. Drag and drop task Execute Action

9. Description - RobotDroppedContainer

10. Settings

a. Rule - RobotDroppedContainer

11. Inputs

a. Add

i. Name - Container

ii. Type - String

b. Add

i. Name - Robot

ii. Type - String

c. Add

i. Name - Destination

ii. Type - String

12. Link the output Container of the Transport Receiver to the input Container of the Execute Action

RobotDroppedContainer

13. Link the output Destination of the Transport Receiver to the input Container of the Execute Action

RobotDroppedContainer

14. Link the output Robot of the Retrieve Data to the input Robot of the Execute Action

RobotDroppedContainer

15. Link the output DroppedContainer to the input Activate of the Execute Action RobotDroppedContainer

16. Drag and drop task Execute Action

a. Description - RobotDropMaterial

b. Settings

c. Rule - RobotDropMaterial

d. Inputs

e. Add

i. Name - Container

ii. Type - String

f. Add

i. Name - Robot

ii. Type - String

g. Add

i. Name - Destination

ii. Type - String

17. Link the output Container of the Transport Receiver to the input Container of the Execute Action

RobotDropMaterial

18. Link the output Destination of the Transport Receiver to the input Container of the Execute Action

RobotDropMaterial

19. Link the output Robot of the Retrieve Data to the input Robot of the Execute Action

RobotDropMaterial

20. Link the output PickedContainer to the input Activate of the Execute Action RobotDropMaterial

Page 17 of 27

21. Use the Store Data task to store the RobotAssigned

a. Settings

b. Working Mode - StoreOnActive

c. Inputs

d. Add

i. Name - RobotAssigned

ii. Identi�er - RobotAssigned

iii. Type - String

iv. Storage - Temporary

22. Link the Robot output from the task Transport Receiver to the input Robot Assigned of the Store Data

task

23. Link the RobotAssigned output from the task Switch to the input Activate of the Store Data task

Fleet-Manager - Raw Material

At this moment we have a consumer for the jobs and we have a work�ow with the lifecycle of the job. Now

we require the integration to the Fleet Manager. For this example we will assume that the �eet manager

runs on MQTT and has the following topics:

1. Topic - FleetManager.Robot.Assign

2. Payload - {"JobId":"<jobID>","Robot":"<robot>"}

3. Topic - FleetManager.Robot.PickContainer

4. Payload - {"JobId":"<jobID>","Container":"<container>"}

5. Topic - FleetManager.Robot.DropContainer

6. Payload - {"JobId":"<jobID>","Container":"<container>","Destination":"\<destination>"}

7. Topic - FleetManager.Robot.PickContainer

file:///app/site_online/tutorials/images/fa_transport_req_mat_int.png
file:///app/site_online/tutorials/images/fa_transport_req_mat_int_store.png

Page 18 of 27

8. Payload - {"JobId":"<jobID>","Container":"<container>","Destination":"<destination>"}

9. Topic - FleetManager.Robot.ArrivedAtDestination

10. Payload - {"JobId":"<jobID>","Container":"<container>"}

Fleet-Manager - Raw Material - Protocol

1. Go to Business Data > Automation Protocol

2. Create New

3. Name MQTT Protocol

4. Select Package for the driver of the mqtt driver

5. Select the version available

6. select Next and Create

Fleet-Manager - Raw Material - Driver De�nition

1. Go to Business Data > Automation DriverDefinition

2. Create New

3. Name Fleet-Manager-RawMaterial_DriverDefinition

4. Select Automation Protocol MQTT Protocol

5. Entity Type Resource

6. select Next

7. Add properties (all properties will have the same details, except the one's mentioned otherwise):

8. Name - RequestMaterial

a. Topic Name - Machine1.Request.Material

b. Type - String

c. Protocol Data Type - String

9. Name - RobotAssigned

a. Topic Name - FleetManager.Robot.Assign

10. Name - PickedContainer

a. Topic Name - FleetManager.Robot.PickContainer

11. Name - DropContainer

a. Topic Name - FleetManager.Robot.DropContainer

12. Name - DropMaterial

a. Topic Name - FleetManager.Robot.DropMaterial

13. Name - ArrivedAtDestination

a. Topic Name - FleetManager.Robot.ArrivedAtDestination

14. Add events

15. Name - RobotAssigned

file:///app/site_online/tutorials/images/mqtt_protocol.png

Page 19 of 27

16. Name - PickedContainer

17. Name - DropContainer

18. Name - DropMaterial

19. Name - ArrivedAtDestination

20. Add event properties with matching properties

Fleet-Manager - Raw Material - Controller

1. Go to Business Data > Automation Controller

2. Create New

3. Entity Type Resource

4. Add Driver De�nition

5. Name Handler

6. Driver De�nition - FleetManager-RawMaterial_DriverDefinition

7. Select Next and Create

file:///app/site_online/tutorials/images/fleet_manager_props.png
file:///app/site_online/tutorials/images/fleet_manager_event_props.png

Page 20 of 27

Fleet-Manager - Raw Material - Controller - Setup

Feel free to use also the Get Configurations task to control the settings of the On Equipment Setup . This is a

simple case so for this case, let's add the address as localhost and keep the default settings.

Fleet-Manager - Raw Material - Controller - Request Material

Create a new page Request Material . The �rst action in the �eet manager will be to notify the �eet

manager of a request material. In this work�ow we will add a Transport Receiver task for the �eet manager

FleetManager-RawMaterial with command Transportation . This is the task that will be noti�ed by the

Transport Requester of the Request Material job. Then we will publish to an mqtt topic

Machine1.Request.Material the required payload, this is mapped by executing the Set Equipment

Properties task for the Automation Property RequestMaterial .

Fleet-Manager - Raw Material - Controller - RobotAssigned

file:///app/site_online/tutorials/images/fleet_manager_controller.png
file:///app/site_online/tutorials/images/fleet_manager_eq_setup.png
file:///app/site_online/tutorials/images/fleet_manager_requestmaterial.png

Page 21 of 27

The next actions will follow a very similar pattern. Create a page RobotAssigned When we receive an On

Equipment Event task for the Event RobotAssigned we will notify our job, using the Transport Requester task

with command interaction. We want to just notify the job that is managing this lifecycle so add the �ag

Include Id in Command as true and we will have to �ll the Id input. It will also be helpful to add a simple

Code task, that will transform the string received into a JSON object. We will also apply an AnyToConstant

converter connecting to the type input of the Transport Requester task, this converter will apply a string

with value RobotAssigned . The type will be used in the job to interpret to do with the interaction.

The �ag Include Id in Command is very important. If the �ag is set as false it means it will be a broadcast to all. If

the task is true a job id must be provided. This is di�erent than when we were in the context of the job, if we are in

the context of Connect IoT we must provide the Id.

Content of the Code task:

The code task will have the string input Value and the Output jobId and data . The Success output of the

Code task will link to the Activate of the Transport Requester .

Fleet-Manager - Raw Material - Controller - Others

The next actions are de�ned in the same fashion, changing the event that triggers them and changing the

converter AnyToConstant to feed the di�erent types.

Note

 public async main(inputs: any, outputs: any): Promise<any> {
 const data = JSON.parse(inputs.Value);

 outputs.jobId.emit(data["JobId"])
 outputs.data.emit(JSON.parse(inputs.Value))
 }

file:///app/site_online/tutorials/images/fleet_manager_robotassigned.png
file:///app/site_online/tutorials/images/fleet_manager_pickedcontainer.png

Page 22 of 27

Fleet-Manager - Raw Material - Controller - Arrived At Destination

The event ArrivedAtDestination will mark the end of the job. It will no longer call an interaction, but will

call a Transport Replier , this task will signal the end of the job to the Transport Requester task of the main

job.

Fleet-Manager - Raw Material - Controller Instance

1. Create a Resource FleetManager-RawMaterial with ProcessingType Component

2. Go to Business Data > Automation Manager

3. Create New

4. Name FleetManager-RawMaterial

5. Logical Address FleetManager-RawMaterial

6. Select Version

file:///app/site_online/tutorials/images/fleet_manager_dropcontainer.png
file:///app/site_online/tutorials/images/fleet_manager_dropmaterial.png
file:///app/site_online/tutorials/images/fleet_manager_arrivedatdestination.png

Page 23 of 27

7. Go to Business Data > Automation Controller > FleetManager-RawMaterial_Controller

8. Select Connect

9. Select Resource FleetManager-RawMaterial and Automation Manager FleetManager-RawMaterial

10. In the Drivers also select the Resource FleetManager-RawMaterial

11. Go to Business Data > Automation Manager > FactoryAutomation

12. Click Download

13. Run the Automation Manager

a. Unzip the Automation Manager

b. Go to scripts

c. Run StartConsole.bat

Start the MQTT Broker

For this implementation we will use an MQTT broker Mosquitto ⧉. Download and install mosquitto.

In order to start the broker with mosquitto, go to where mosquitto was installed.

If the mosquitto was installed as a windows service you won't need to start a console for the mosquitto broker.

To start the broker open a powershell console:

Now the system should have the �eet manager and the Factory Automation worker communicating.

Executing a Job Lifecycle

All the components have been created so we can perform the full job lifecycle.

Note

cd "C:\Program Files\mosquitto"
.\mosquitto.exe -v

file:///app/site_online/tutorials/images/fleet_manager_rawmaterial_manager.png
https://mosquitto.org/
file:///app/site_online/tutorials/images/fleet_manager_communicating.png

Page 24 of 27

Let's subscribe to the topic where we will send the request material, so we can con�rm that we will receive

the correct payload:

Dispatch the Material - Cookie Batch to the Oven Resource. As we have seen previously a job will be

created and will be processed.

Now we can see that the worker processed the job.

In the worker it logs that the message was sent successfully so let's see the �eet manager.

Lastly in the mqtt subscriber we will see that a message arrived as expected.

We have �nished the request of the material to the �eet manager. In the next step, the �eet manager will

reply with the assignment of a robot. In order to simulate this let´s use mosquitto. We will want to send a

message to the topic of the robot assignment event FleetManager.Robot.Assign and the payload must have

the jobId and the robot. We will use AGV1 as the name of the robot to match what we created in the MES

and the jobId we can see in the logs that it was 2310311623180000077 , in your case the job id may be

di�erent.

cd "C:\Program Files\mosquitto"
.\mosquitto_sub.exe -h localhost -t "Machine1.Request.Material"

cd "C:\Program Files\mosquitto"
.\mosquitto_pub.exe -h localhost -t "FleetManager.Robot.Assign" -m
'{"JobId":"2310311623180000077","Robot":"AGV1"}'

file:///app/site_online/tutorials/images/fa_transport_controller_job_created.png
file:///app/site_online/tutorials/images/fa_transport_controller_job_created_worker.png
file:///app/site_online/tutorials/images/fa_transport_controller_job_created_fleetmanager.png
file:///app/site_online/tutorials/images/fa_transport_controller_job_created_mosquitto.png
file:///app/site_online/tutorials/images/fa_transport_controller_robotassigned_mosquitto.png

Page 25 of 27

Now the �eet manager will receive the event and forward it to the job.

In the job, it will store the information about the robot assigned.

The next action will be the robot picking a container, we will the container we created CoalContainer001 .

Now the �eet manager will receive the event and forward it to the job.

The worker will receive the message and invoke the execute action for the robot picked container.

In the MES we can now see that the Resource AGV1 will now have a container docked.

In the next action the robot will drop the container in the load port of the Resource Oven .

The �eet manager will forward the message to the job.

The worker will receive the message and invoke the execute action for the robot dropped container.

.\mosquitto_pub.exe -h localhost -t "FleetManager.Robot.PickContainer" -m
'{"JobId":"2310311623180000077","Container":"CoalContainer001"}'

.\mosquitto_pub.exe -h localhost -t "FleetManager.Robot.DropContainer" -m
'{"JobId":"2310311623180000077","Container":"CoalContainer001", "Destination":"Coal LoadPort"}'

file:///app/site_online/tutorials/images/fa_transport_controller_robotassigned_fleetmanager.png
file:///app/site_online/tutorials/images/fa_transport_controller_robotassigned_worker.png
file:///app/site_online/tutorials/images/fa_transport_controller_pickedcontainer_fleetmanager.png
file:///app/site_online/tutorials/images/fa_transport_controller_pickedcontainer_worker.png
file:///app/site_online/tutorials/images/fa_transport_controller_pickedcontainer_agv1.png
file:///app/site_online/tutorials/images/fa_transport_controller_droppedcontainer_fleetmanager.png

Page 26 of 27

In the MES we can now see that the Resource AGV1 will now have no docked and the container will now be

at the Resource Coal LoadPort .

Now the robot will drop the material into the feeder Resource Coal Feeder .

The �eet manager will forward the message to the job.

The worker will receive the message and invoke the execute action for the robot dropped material.

In the Resource Oven if we select Manage Consumables we can see that now we have a material in our

consumable feed.

.\mosquitto_pub.exe -h localhost -t "FleetManager.Robot.DropMaterial" -m
'{"JobId":"2310311623180000077","Container":"CoalContainer001", "Destination":"Coal Feeder"}'

file:///app/site_online/tutorials/images/fa_transport_controller_droppedcontainer_worker.png
file:///app/site_online/tutorials/images/fa_transport_controller_droppedcontainer_coalloadport.png
file:///app/site_online/tutorials/images/fa_transport_controller_dropmaterial_fleetmanager.png
file:///app/site_online/tutorials/images/fa_transport_controller_dropmaterial_worker.png
file:///app/site_online/tutorials/images/fa_transport_controller_dropmaterial_manage_consumables.png

Page 27 of 27

The �eet manager will forward the message to the job.

The job Transport Requester will be noti�ed and emit outputs. This will signal the end of the job.

In the Factory Automation GUI we can now see that our job is Processed

Handling Failures

In this tutorial we did not address error scenarios. If the job is canceled, you can use the Transport

Replier task to signal the end of the job, but with the command CancelTransportation . If the job is in error,

you can use the Transport Replier task with the command Transportation , but with the input error �lled

in. The error messages will then be visible in the Factory Automation GUI.

More information on the Factory Automation section of the User Guide.

.\mosquitto_pub.exe -h localhost -t "FleetManager.Robot.ArrivedAtDestination" -m
'{"JobId":"2310311623180000077","Container":"CoalContainer001"}'

Info

file:///app/site_online/tutorials/images/fa_transport_controller_arriveatlocation_fleetmanager.png
file:///app/site_online/tutorials/images/fa_transport_controller_arriveatlocation_worker.png
file:///app/site_online/tutorials/images/fa_transport_controller_job_completed.png
file:///app/site_online/userguide/automation/monitoring/automation_factory_automation/

Legal Information

Disclaimer

The information contained in this document represents the current view of Critical Manufacturing
on the issues discussed as of the date of publication. Because Critical Manufacturing must
respond to changing market conditions, it should not be interpreted to be a commitment on the
part of Critical Manufacturing, and Critical Manufacturing cannot guarantee the accuracy of any
information presented after the date of publication. This document is for informational purposes
only.

Critical Manufacturing makes no warranties, express, implied or statutory, as to the information
herein contained.

Confidentiality Notice

All materials and information included herein are being provided by Critical Manufacturing to its
Customer solely for Customer internal use for its business purposes. Critical Manufacturing retains
all rights, titles, interests in and copyrights to the materials and information herein. The materials
and information contained herein constitute confidential information of Critical Manufacturing and
the Customer must not disclose or transfer by any means any of these materials or information,
whether total or partial, to any third party without the prior explicit consent by Critical
Manufacturing.

Copyright Information

All title and copyrights in and to the Software (including but not limited to any source code,
binaries, designs, specifications, models, documents, layouts, images, photographs, animations,
video, audio, music, text incorporated into the Software), the accompanying printed materials,
and any copies of the Software, and any trademarks or service marks of Critical Manufacturing
are owned by Critical Manufacturing unless explicitly stated otherwise. All title and intellectual
property rights in and to the content that may be accessed through use of the Software is the
property of the respective content owner and is protected by applicable copyright or other
intellectual property laws and treaties.

Trademark Information

Critical Manufacturing is a registered trademark of Critical Manufacturing.

All other trademarks are property of their respective owners.

Copyright © 2023 Critical Manufacturing. All rights reserved.

