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Predictive Maintenance with a Milling Machine Use Case

The information that follows serves to guide you on how to implement a predictive maintenance workflow
using machine learning.

Overview

Predictive maintenance uses machine data to predict when a failure is likely to occur, which enables
proactive maintenance to minimize downtime and reduce costs. In this tutorial, we will demonstrate how to
implement predictive maintenance for a milling machine, leveraging insights gathered during data
collection.

This use case focuses on the following key failure scenarios:

1. Tool Wear Failure (TWF)

2. Heat Dissipation Failure (HDF)
3. Power Failure (PWF)

4. Overstrain Failure (OSF)

5. Random Failures (RNF)

We will also estimate the Remaining Useful Life (RUL) of the milling machine based on observed time
intervals between failures.

Preconditions

Before implementing predictive maintenance, ensure the following:

1. Data Collection:

* Historical failure data with features such as tool wear, temperature, rotational speed, torque, and
power usage.

2. Analytical Tools:

* A data visualization platform (example: Grafana) and access to Data Platform ML Model.
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Steps to Implement Predictive Maintenance

As context, let's consider a milling machine with the following failure scenarios:

e TWEF: Tool wear reaches its limit (200-240 min).

* HDF: Heat dissipation fails when temp difference < 8.6 K and rotational speed < 1380 rpm.
* PWF: Power fails when P <3500 W or P > 9000 W.

e OSF: ToolWear x Torque > 11000 minNm for load L, 12000 for M, 13000 for H.

e RNF: Rare random failures (<1%).

Step 1: Data Preprocessing
1. Import Data: Load the data via Post Event and store it in a Data Set. For more information, see Outlier
Detection using Machine Learning. Ensure it contains fields you need.

2. Clean Data: Handle missing values and outliers. Standardize or normalize data for consistent analysis.
This can be done for you in the ML Model wizard.

3. Feature Engineering:

* Optionally, we may compute derived metrics like power using P = Torque * Rot. Speed (rad/s).
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Once again, these last steps may be performed within the ML Model.

Step 2: Exploratory Data Analysis

1. Visualize Data: Use graphs and dashboards to identify trends and patterns.
* Example: Plot tool wear over time to observe failure intervals.

2. Correlations: Analyze correlations between failure events and parameters like tool wear, temperature,
and power.

3. Failure Insights: Validate that failure conditions align with the thresholds provided:

* Example: Check if failures occur when temp difference < 8.6 K and rotational speed < 1380 rpm
(HDF).
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In the image, we can see the data structure along with their correlation matrix. For this particular dataset,
we observe the dataset is not balanced - for classification problems, you may first consider apply over-
sampling and/or under-sampling techniques.

Step 3: Predictive Modeling

Let's divide the predictive modeling into two parts:

1. Label RUL:
® Calculate the time remaining until the next failure for each data point.

e Use a linear approximation based on the observed time intervals between failures.

RUL data points
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2. Train RUL Model:

* Train the model using features like tool wear, temperature, power, and torque. Select, during the
ML Model wizard, the RUL column as label. This will define the experiment as a regression problem
- you can check the Details view later on.

® Use the ML Model to predict RUL. Validate the ML Model's performance.
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As this is a regression problem, choose a metric that fits your needs. When it is trained, you only need to
set it effective to deploy the model in MES ecosystem.
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Remember that the ML Model consist in an AutoML framework, thus, it will automatically select the best model for
your problem. For more information, see this link 1.

Step 4: Integrate with Real-Time Monitoring

1.Set Up loT workflow:
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* Assign an loT workflow to post the readings. The workflows, when triggered, will then predict the
time to fail and record the value in a Data Set via Post Event, as shown in the image:

IoT Event
ML Model Definition

IoT Event

Definition

Training Prediction
dataset dotaset

2. Add ML Task:

* Drag the ML Task and connect the inputs, but first you must select the right loT Event Definition -
select the settings button to do so. For more information, see Outlier Detection using Machine
Learning.

* Select the settings button to choose the right event definition.

When this is done, connect the blocks and run the workflow by manually posting an event. Example:
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You should see a new record in the predicted RUL Data Set.

Step 5: Validate and Optimize
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1. Create Dashboards:

* Display real-time RUL estimates, failure type predictions, and key parameters (example: tool wear,
power).

2. Test Predictions:

* Compare model predictions with actual failures to evaluate accuracy.
3. Adjust Models:

e Refine thresholds and retrain models with updated data to improve predictions.
4. Monitor Performance:

® Continuously monitor the workflow to ensure reliability.
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Final remarks
The example dashboard for the milling machine could include:

* Tool Wear Monitor: Visualize tool wear over time, highlighting when it nears failure thresholds.
¢ Telemetry Trends: Show temperature differences and power consumption to detect anomalies.
¢ RUL Estimation: Display predicted RUL in minutes.

By following this tutorial, you can build a predictive maintenance workflow for a milling machine that

improves uptime, reduces costs, and ensures smooth production processes. For further assistance, refer to
your data analytics platform documentation or consult with your engineering team.
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