Skip to content

Average and Range (Xbar R)#

The following table list the properties of the Average and Range (x̄ R) chart

Property Description
Chart Average and Range (x̄ R)
Process observation types Variables
Process observations relationships Independent
Sample Size \< 10, but usually 3 to 5
Distribution type Normal
Size of shift to detect Large (≥ 1.5σ)
Average (Indicator 1) \(\mu=\frac{x_{1}+x_{2}+x_{3}+\cdots+x_{n}}{n}\)
Range (Indicator 2) \(r_{n}=Max(x_{1} \cdots x_{n})-Min(x_{1} \cdots x_{n})\)
Mean for All values \(\mu=\overline{\overline{X}}=\frac{\sum{x_{ij}}}{\sum{n_{i}}}\)
Process Mean \(\mu\)
Process Standard Deviation \(\sigma=S_r=\frac{\sum{r_i}\cdot\frac{\left [ d_2(n_i) \right ]}{\left [ d_3(n_i) \right ]^{2}}}{\sum{\frac{\left [ d_2(n_i) \right ]^{2}}{\left [ d_3(n_i) \right ]^{2}}}}\)
Where \(r_i\) is the range for the data point
Average (Indicator 1) Centerline \(\mu\)
Average (Indicator 1) Control Limits \(UCL = \mu + \frac{3\sigma}{\sqrt{n_i}}\)
\(LCL = \mu - \frac{3\sigma}{\sqrt{n_i}}\)
Where \(n_i\) = number of observations in sample (subgroup)
Range (Indicator 2) Centerline \(\overline{R_i} = d_2(n_i)\cdot\sigma\)
Range (Indicator 2) Control Limits \(UCL = \overline{R}_i + 3\sigma \cdot d_3(n_i)\)
\(LCL = max(\overline{R}_i - 3\sigma \cdot d_3(n_i);0)\)

Table: Average and Range chart properties

The statistical table used to compute the control limits can be consulted in the Control Chart Constants page.