Skip to content

Average and Standard Deviation (Xbar s)#

The following table lists the properties of the Average and Standard Deviation (x̄ s) chart.

Property Description
Chart Average and Standard Deviation (x̄ s)
Process observation types Variables
Process observations relationships Independent
Sample Size Usually >=10
Distribution type Normal
Size of shift to detect Large (≥ 1.5σ)
Average (Indicator 1) \(\overline{x}=\frac{\sum_i\overline{x}_i}{i}\)
Standard Deviation (Indicator 2) \(s=\sqrt{\frac{\sum(x_i-\overline{x})^2}{n-1}}\)
Mean for All values \(\mu=\overline{\overline{X}}=\frac{\sum{x_{ij}}}{\sum{n_{i}}}\)
Process Mean \(\mu\)
Process Standard Deviation \(\sigma=\overline{S}=\frac{\sum{S_i}\cdot\frac{c_4(n_i)}{1 - c_4(n_i)^{2}}}{\sum{\frac{c_4(n_i)^{2}}{1 - c_4(n_i)^{2}}}}\)
Where \(S_i\) is the standard deviation for the data point as given by:
\(s=\sqrt{\frac{\sum(x_i-\overline{x})^2}{n-1}}\)
Average (Indicator 1) Centerline \(\mu\)
Average (Indicator 1) Control Limits \(UCL = \mu + \frac{3\sigma}{\sqrt{n_i}}\)
\(LCL = \mu - \frac{3\sigma}{\sqrt{n_i}}\)
Standard Deviation (Indicator 2) Centerline \(\overline{S}_i = c_4(n_i)\cdot\sigma\)
Standard Deviation (Indicator 2) Control Limits \(UCL = \overline{S}_i + 3\sigma \cdot c_5(n_i)\)
\(LCL = max(\overline{S}_i - 3\sigma \cdot c_5(n_i);0)\)

Table: Average and Standard Deviation chart properties

The statistical table used to compute the control limits can be consulted in the Control Chart Constants page.